首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Remote Sensing Image Matching Based on Adaptive Binning SIFT Descriptor
【24h】

Remote Sensing Image Matching Based on Adaptive Binning SIFT Descriptor

机译:基于自适应分箱SIFT描述符的遥感图像匹配

获取原文
获取原文并翻译 | 示例

摘要

Image matching based on local invariant features is crucial for many photogrammetric and remote sensing applications such as image registration and image mosaicking. In this paper, a novel local feature descriptor named adaptive binning scale-invariant feature transform (AB-SIFT) for fully automatic remote sensing image matching that is robust to local geometric distortions is proposed. The main idea of the proposed method is an adaptive binning strategy to compute the local feature descriptor. The proposed descriptor is computed on a normalized region defined by an improved version of the prominent Hessian affine feature extraction algorithm called the uniform robust Hessian affine algorithm. Unlike common distribution-based descriptors, the proposed descriptor uses an adaptive histogram quantization strategy for both location and gradient orientations, which is robust and actually resistant to a local viewpoint distortion and extremely increases the discriminability and robustness of the final AB-SIFT descriptor. In addition to the SIFT descriptor, the proposed adaptive quantization strategy can be easily extended for other distribution-based descriptors. Experimental results on both synthetic and real image pairs show that the proposed AB-SIFT matching method is more robust and accurate than state-of-the-art methods, including the SIFT, DAISY, the gradient location and orientation histogram, the local intensity order pattern, and the binary robust invariant scale keypoint.
机译:基于局部不变特征的图像匹配对于许多摄影测量和遥感应用(例如图像配准和图像镶嵌)至关重要。本文提出了一种新颖的局部特征描述符,称为自适应合并尺度不变特征变换(AB-SIFT),用于全自动遥感图像匹配,对局部几何失真具有鲁棒性。所提出方法的主要思想是一种用于计算局部特征描述符的自适应合并策略。所提出的描述符是在由著名的Hessian仿射特征提取算法(称为统一鲁棒Hessian仿射算法)的改进版本定义的归一化区域上计算的。与常见的基于分布的描述符不同,所提出的描述符针对位置和坡度方向都使用了自适应直方图量化策略,该策略很健壮并且实际上可以抵抗局部视点失真,并极大地提高了最终AB-SIFT描述符的可分辨性和健壮性。除了SIFT描述符外,所提出的自适应量化策略还可以轻松扩展为其他基于分布的描述符。在合成和真实图像对上的实验结果表明,所提出的AB-SIFT匹配方法比包括SIFT,DAISY,梯度位置和方向直方图,局部强度阶数在内的最新方法更为稳健和准确。模式,以及二进制鲁棒不变标度关键点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号