首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >MTF-Adjusted Pansharpening Approach Based on Coupled Multiresolution Decompositions
【24h】

MTF-Adjusted Pansharpening Approach Based on Coupled Multiresolution Decompositions

机译:基于耦合多分辨率分解的MTF调整全锐化方法

获取原文
获取原文并翻译 | 示例

摘要

Among others, the wavelet-based pansharpening approach tries to enhance the resolution of the multispectral (MS) image by injection of spatial details extracted from the high-resolution panchromatic (PAN) image. The problem is presented as follows, the inputs are a coarse-resolution MS image and a high-resolution detail image provided from the PAN image; therefore, one would think that the wavelet reconstruction allows combining approximations and details to construct the high-resolution MS image. However, the wavelet transform (WT) assumes that details and approximations are calculated using the same wavelet decomposition. Now, in the pansharpening case, the MS low-resolution image is assumed to be aliased and blurred due to the imaging system modulation transfer function (MTF) that is approximated as a specific low-pass filter. Meanwhile, there are no constraints about details that can be extracted from PAN using discrete WT (DWT). Approximation and details are not any more orthogonal as needed in the reconstruct of the MS high-resolution image based on DWT. For that, we propose in this paper a new fusion schema [coupled multiresolution decomposition model (CMD)] allowing the reconstruction of a high-resolution MS given its approximation and details obtained by MTF-tailored downsampling and wavelet decomposition, respectively. For validation, CMD is applied to Pléiades, GeoEye-1, and SPOT 6 images. Compared to other approaches [i.e., Gram–Schmidt (GS) adaptive, GS mode 2 (GS2), “À trous’ WT (AWT), generalized Laplacian pyramid (GLP), DWT, and PCI Geomatics software algorithm], our method performs generally better.
机译:其中,基于小波的全锐化方法尝试通过注入从高分辨率全色(PAN)图像中提取的空间细节来增强多光谱(MS)图像的分辨率。问题如下所示,输入是从PAN图像提供的粗分辨率MS图像和高分辨率细节图像。因此,人们会认为小波重构可以将近似值和细节组合起来,以构造高分辨率MS图像。但是,小波变换(WT)假定使用相同的小波分解来计算细节和近似值。现在,在锐化情况下,由于成像系统调制传递函数(MTF)近似为特定的低通滤波器,因此假定MS低分辨率图像出现混叠和模糊。同时,对于可以使用离散WT(DWT)从PAN提取的细节没有任何限制。在基于DWT的MS高分辨率图像的重建中,逼近度和细节不再是正交的。为此,我们在本文中提出了一种新的融合方案[耦合多分辨率分解模型(CMD)],该模型允许分别给出近似值和通过MTF量身定制的下采样和小波分解获得的细节来重建高分辨率MS。为了验证,将CMD应用于Pléiades,GeoEye-1和SPOT 6图像。与其他方法(例如,Gram-Schmidt(GS)自适应,GS模式2(GS2),“ Trous” WT(AWT),广义拉普拉斯金字塔(GLP),DWT和PCI Geomatics软件算法)相比,我们的方法执行总的来说更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号