首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Vegetation Sensing Using GPS-Interferometric Reflectometry: Theoretical Effects of Canopy Parameters on Signal-to-Noise Ratio Data
【24h】

Vegetation Sensing Using GPS-Interferometric Reflectometry: Theoretical Effects of Canopy Parameters on Signal-to-Noise Ratio Data

机译:利用GPS干涉反射仪进行植被传感:冠层参数对信噪比数据的理论影响

获取原文
获取原文并翻译 | 示例

摘要

The potential to use GPS signal-to-noise ratio (SNR) data to estimate changes in vegetation surrounding a ground-based antenna is evaluated. A 1-D plane-stratified model that simulates the response of GPS SNR data to changes in both soil moisture and vegetation is presented. The model is validated against observations of SNR data from four field sites with varying vegetation cover. Validation shows that the average correlation between modeled and observed SNR data is higher than the average correlation between concurrent SNR observations from different satellite tracks at a site. The model also reproduces variations in the SNR metrics amplitude, phase, and effective reflector height over a range of vegetation wet weights from 0 to 4 , with values of 0.79, 0.84, and 0.62, respectively. Model simulations indicate that the amplitude of SNR oscillations may be used to estimate vegetation amount when vegetation wet weight is below 1.5 . When vegetation wet weight exceeds 1.5 , the sensitivity of amplitude to changes in vegetation amount decreases. Phase of SNR oscillations also varies consistently with vegetation up to 1.5 . However, phase is also very sensitive to soil moisture variations, thus limiting its utility for estimating vegetation. Effective reflector height is not a consistent indicator of vegetation change. Beyond 1.5 , the constant frequency assumption used to characterize SNR fluctuations does- not adequately describe observed data. A more complex approach than the standard SNR metrics used here is required to extend GPS-Interferometric Reflectometry sensing to thicker canopies.
机译:评估了使用GPS信噪比(SNR)数据估算地面天线周围植被变化的潜力。提出了一个一维平面分层模型,该模型可模拟GPS SNR数据对土壤水分和植被变化的响应。该模型针对观察到的来自四个植被覆盖度不同的野外站点的SNR数据进行了验证。验证显示,建模和观察到的SNR数据之间的平均相关性高于某个站点上来自不同卫星轨道的同时SNR观察之间的平均相关性。该模型还再现了从0到4的植被湿重范围内SNR度量幅度,相位和有效反射器高度的变化,其值分别为0.79、0.84和0.62。模型仿真表明,当植被湿重小于1.5时,信噪比振荡的幅度可用于估算植被数量。当植被湿重超过1.5时,振幅对植被数量变化的敏感性降低。 SNR振荡的相位也随着植被的变化而一致地变化,直至1.5。但是,相位对土壤水分的变化也非常敏感,因此限制了其在估算植被方面的效用。有效的反射器高度不是植被变化的一致指标。超过1.5时,用于表征SNR波动的恒定频率假设不能充分描述观察到的数据。需要比此处使用的标准SNR度量更复杂的方法,才能将GPS干涉反射法传感扩展到较厚的树冠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号