首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Gaussian Processes for Estimating Wavelength Position of the Ferric Iron Crystal Field Feature at $sim$900 nm From Hyperspectral Imagery Acquired in the Short-Wave Infrared (1002–1355 nm)
【24h】

Gaussian Processes for Estimating Wavelength Position of the Ferric Iron Crystal Field Feature at $sim$900 nm From Hyperspectral Imagery Acquired in the Short-Wave Infrared (1002–1355 nm)

机译:从获取的高光谱图像估计 $ sim $ 900 nm的铁铁晶体场特征的波长位置的高斯过程在短波红外(1002–1355 nm)中

获取原文
获取原文并翻译 | 示例
       

摘要

Many economically important minerals have absorption features in the short-wave infrared (SWIR; 2000–2500 nm). Sensors which measure this part of the spectrum cannot detect the wavelength minimum of a feature at $sim$900 nm $({rm F}_{900})$, indicative of ferric iron mineralogy. A method based on Gaussian processes (GPs) was developed and compared with multiple linear regression (MLR) to estimate the wavelength position of ${rm F}_{900}$ from SWIR data (1002–1355 nm). SWIR data with different signal-to-noise ratios were acquired from crushed rock samples by a nonimaging spectrometer and an imaging spectrometer. GP estimates of wavelength position were converted to the proportion of goethite using coefficients from a regression of the proportion of goethite determined from X-ray diffraction (XRD) on wavelength position measured directly from spectra. GP-estimated wavelength positions were within the 2-nm and $sim$4-nm root-mean-square error of measurements made directly from spectra for nonimaging and imaging spectrometer data, respectively. Proportions of goethite derived from these estimates were respectively within 4 $%$ and 6 $%$ of the values measured by XRD. MLR performed poorly compared to GPs when applied to data with no added noise and failed when applied to data with added noise or to imaging spectrometer data. These findings indicate that the wavelength position of ${rm F}_{900}$—an indicator of ferric iron mineralogy—can be estimated f- om data acquired at SWIR wavelengths (1002–1355 nm). This opens up possibilities for using a single (SWIR) sensor to acquire information on ferric iron mineralogy (using ${rm F}_{900}$) and other minerals with diagnostic absorptions between 1000 and 2500 nm.
机译:许多经济上重要的矿物在短波红外(SWIR; 2000–2500 nm)中具有吸收特征。测量这部分光谱的传感器无法在 $ sim $ 900 nm < inline-formula> $({rm F} _ {900})$ ,表示三价铁矿物学。开发了一种基于高斯过程(GPs)的方法,并将其与多元线性回归(MLR)进行比较,以估算 $ {rm F} _ {900}的波长位置来自SWIR数据(1002-1135 nm)的$ 。通过非成像光谱仪和成像光谱仪从碎石样品中获取具有不同信噪比的SWIR数据。使用根据X射线衍射(XRD)对直接从光谱测量的波长位置确定的针铁矿比例的回归系数,将波长位置的GP估计值转换为针铁矿的比例。 GP估计的波长位置在2-nm和 $ sim $ 4-nm均方根之内直接从非成像和成像光谱仪数据的光谱直接获得的测量误差。从这些估计得出的针铁矿的比例分别在4个 $%$ 和6个 $%$ 由XRD测量的值。当应用于没有附加噪声的数据时,MLR与GP相比性能较差;而应用于具有附加噪声的数据或成像光谱仪数据时,MLR则失败。这些发现表明 $ {rm F} _ {900} $ 的波长位置-铁的指标铁矿物学-可以从在SWIR波长(1002-1135 nm)处获得的数据估计得出。这为使用单个(SWIR)传感器获取铁铁矿物学信息提供了可能性(使用 $ {rm F} _ {900} $ )和其他具有1000至2500 nm诊断吸收的矿物质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号