首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Fast Statistically Homogeneous Pixel Selection for Covariance Matrix Estimation for Multitemporal InSAR
【24h】

Fast Statistically Homogeneous Pixel Selection for Covariance Matrix Estimation for Multitemporal InSAR

机译:用于多时相InSAR的协方差矩阵估计的快速统计均匀像素选择

获取原文
获取原文并翻译 | 示例

摘要

Multitemporal interferometric synthetic aperture radar (InSAR) is increasingly being used for Earth observations. Inaccurate estimation of the covariance matrix is considered to be the most important source of error in such applications. Previous studies, namely, DeSpecKS and its variants, have demonstrated their advantages in improving the estimation accuracy for distributed targets by means of statistically homogeneous pixels (SHPs). However, these methods may be unreliable for small sample sizes and sensitive to data stacks showing large time spacing due to the variability of the temporal sample. Moreover, these methods are computationally intensive. In this paper, a new algorithm named fast SHP selection (FaSHPS) is proposed to solve both problems. FaSHPS explores the confidence interval for each pixel by invoking the central limit theorem and then selects SHPs using this interval. Based on identified SHPs, two estimators with respect to the despeckling and the bias mitigation of the sample coherence are proposed to refine the elements of the InSAR covariance matrix. A series of qualitative and quantitative evaluations are presented to demonstrate the effectiveness of our method.
机译:多时相干涉合成孔径雷达(InSAR)正越来越多地用于地球观测。在这种应用中,协方差矩阵的不正确估计被认为是最重要的误差来源。先前的研究,即DeSpecKS及其变体,已经证明了其在统计上均一的像素(SHP)方面提高分布式目标的估计精度的优势。但是,由于时间样本的可变性,这些方法对于小样本量可能不可靠,并且对显示大时间间隔的数据堆栈敏感。而且,这些方法是计算密集型的。为了解决这两个问题,本文提出了一种新的算法,叫做 快速SHP选择 。 FaSHPS通过调用中心极限定理探索每个像素的置信区间,然后使用该区间选择SHP。基于已识别的SHP,提出了两个针对样本相干性的去斑点和偏差缓解的估计器,以完善InSAR协方差矩阵的元素。进行了一系列定性和定量评估,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号