首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Weakly Supervised Learning Based on Coupled Convolutional Neural Networks for Aircraft Detection
【24h】

Weakly Supervised Learning Based on Coupled Convolutional Neural Networks for Aircraft Detection

机译:基于耦合卷积神经网络的飞机弱弱监督学习

获取原文
获取原文并翻译 | 示例

摘要

Aircraft detection from very high resolution (VHR) remote sensing images has been drawing increasing interest in recent years due to the successful civil and military applications. However, several challenges still exist: 1) extracting the high-level features and the hierarchical feature representations of the objects is difficu 2) manual annotation of the objects in large image sets is generally expensive and sometimes unreliable; and 3) locating objects within such a large image is difficult and time consuming. In this paper, we propose a weakly supervised learning framework based on coupled convolutional neural networks (CNNs) for aircraft detection, which can simultaneously solve these problems. We first develop a CNN-based method to extract the high-level features and the hierarchical feature representations of the objects. We then employ an iterative weakly supervised learning framework to automatically mine and augment the training data set from the original image. We propose a coupled CNN method, which combines a candidate region proposal network and a localization network to extract the proposals and simultaneously locate the aircraft, which is more efficient and accurate, even in large-scale VHR images. In the experiments, the proposed method was applied to three challenging high-resolution data sets: the Sydney International Airport data set, the Tokyo Haneda Airport data set, and the Berlin Tegel Airport data set. The extensive experimental results confirm that the proposed method can achieve a higher detection accuracy than the other methods.
机译:由于民用和军用的成功应用,近年来从超高分辨率(VHR)遥感图像进行飞机检测已引起越来越多的关注。但是,仍然存在一些挑战:1)提取对象的高级特征和分层特征表示很困难; 2)在大型图像集中手动注释对象通常很昂贵,有时甚至不可靠; 3)在如此大的图像中定位对象既困难又耗时。在本文中,我们提出了一种基于耦合卷积神经网络(CNN)的用于飞机检测的弱监督学习框架,它可以同时解决这些问题。我们首先开发一种基于CNN的方法来提取对象的高级特征和分层特征表示。然后,我们采用迭代的弱监督学习框架从原始图像中自动挖掘和扩充训练数据集。我们提出了一种耦合CNN方法,该方法将候选区域建议网络和定位网络相结合以提取建议并同时定位飞机,即使在大规模VHR图像中,该方法也更加有效和准确。在实验中,将所提出的方法应用于三个具有挑战性的高分辨率数据集:悉尼国际机场数据集,东京羽田机场数据集和柏林泰格尔机场数据集。大量的实验结果证实了该方法可比其他方法获得更高的检测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号