首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Novel Synergetic Classification Approach for Hyperspectral and Panchromatic Images Based on Self-Learning
【24h】

A Novel Synergetic Classification Approach for Hyperspectral and Panchromatic Images Based on Self-Learning

机译:基于自学习的高光谱和全色图像协同分类新方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a self-learning approach for remote sensing image classification. The main work of this paper aims at providing a new framework of semisupervised learning technique for multiple-source synergetic classification, thereby improving the classification accuracy under the condition of small samples. Considering the high spectral resolution of a hyperspectral (HS) image and the high spatial resolution of a panchromatic (PAN) image, the proposed approach combines image segmentation with an active learning algorithm and adopts a standard active learning method for a self-learning strategy, in which the learning algorithm automatically selects informative unlabeled samples by itself according to their collaborative spatial–spectral features and the predicted information of a spectral-based classifier. This way, no extra cost of human expertise is required for labeling the selected pixels when compared with conventional active learning methods. Experiments on three data sets, including HS and PAN images, indicate that our proposed approach has a great enhancement on overall classification accuracy compared with classical supervised algorithms and turns out to be a promising strategy in synergetic classification of HS and PAN images.
机译:在本文中,我们提出了一种用于遥感图像分类的自学习方法。本文的主要工作旨在为多源协同分类提供一种新的半监督学习框架,从而在小样本情况下提高分类精度。考虑到高光谱(HS)图像的高光谱分辨率和全色(PAN)图像的高空间分辨率,提出的方法将图像分割与主动学习算法结合在一起,并采用标准主动学习方法作为自学习策略,其中,学习算法根据其协作的空间光谱特征和基于光谱的分类器的预测信息,自动自动选择信息量未标记的样本。这样,与传统的主动学习方法相比,无需花费额外的人力专业知识来标记所选像素。对包括HS和PAN​​图像在内的三个数据集进行的实验表明,与经典的监督算法相比,我们提出的方法在整体分类精度上有很大提高,并且被证明是HS和PAN​​图像协同分类中的一种有前途的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号