首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Simultaneously Sparse and Low-Rank Abundance Matrix Estimation for Hyperspectral Image Unmixing
【24h】

Simultaneously Sparse and Low-Rank Abundance Matrix Estimation for Hyperspectral Image Unmixing

机译:同时稀疏和低秩丰度矩阵估计的高光谱图像混合

获取原文
获取原文并翻译 | 示例

摘要

In a plethora of applications dealing with inverse problems, e.g., image processing, social networks, compressive sensing, and biological data processing, the signal of interest is known to be structured in several ways at the same time. This premise has recently guided research into the innovative and meaningful idea of imposing multiple constraints on the unknown parameters involved in the problem under study. For instance, when dealing with problems whose unknown parameters form sparse and low-rank matrices, the adoption of suitably combined constraints imposing sparsity and low rankness is expected to yield substantially enhanced estimation results. In this paper, we address the spectral unmixing problem in hyperspectral images. Specifically, two novel unmixing algorithms are introduced in an attempt to exploit both spatial correlation and sparse representation of pixels lying in the homogeneous regions of hyperspectral images. To this end, a novel mixed penalty term is first defined consisting of the sum of the weighted and the weighted nuclear norm of the abundance matrix corresponding to a small area of the image determined by a sliding square window. This penalty term is then used to regularize a conventional quadratic cost function and impose simultaneous sparsity and low rankness on the abundance matrix. The resulting regularized cost function is minimized by: 1) an incremental proximal sparse and low-rank unmixing algorithm; and 2) an algorithm based on the alternating direction method of multipliers. The effectiveness of the proposed algorithms is illustrated in experiments conducted both on simulated and real data.
机译:在处理逆问题的大量应用中,例如图像处理,社交网络,压缩感测和生物数据处理,已知感兴趣的信号以几种方式同时构造。这个前提最近指导了对创新和有意义的想法的研究,该想法对研究中的问题所涉及的未知参数施加了多个约束。例如,当处理未知参数形成稀疏矩阵和低秩矩阵的问题时,采用稀疏和低秩的适当组合约束条件可望大大提高估计结果。在本文中,我们解决了高光谱图像中的光谱分解问题。具体地,引入两种新颖的解混算法,以尝试利用位于高光谱图像的同质区域中的像素的空间相关性和稀疏表示。为此,首先定义一个新颖的混合惩罚项,该项由丰度矩阵的加权和加权核范数之和组成,该矩阵对应于由滑动方窗确定的图像的一小部分。然后使用该惩罚项对常规的二次成本函数进行正则化,并在丰度矩阵上同时施加稀疏性和低秩。通过以下方法最小化由此产生的正规化成本函数:1)增量近端稀疏和低秩分解算法; 2)基于乘法器交替方向法的算法。在模拟和真实数据上进行的实验中说明了所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号