首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Spectral–Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images
【24h】

Spectral–Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images

机译:高光谱遥感影像的光谱空间稀疏子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Clustering for hyperspectral images (HSIs) is a very challenging task due to its inherent complexity. In this paper, we propose a novel spectral–spatial sparse subspace clustering algorithm for hyperspectral remote sensing images. First, by treating each kind of land-cover class as a subspace, we introduce the sparse subspace clustering (SSC) algorithm to HSIs. Then, considering the spectral and spatial properties of HSIs, the high spectral correlation and rich spatial information of the HSIs are taken into consideration in the SSC model to obtain a more accurate coefficient matrix, which is used to build the adjacent matrix. Finally, spectral clustering is applied to the adjacent matrix to obtain the final clustering result. Several experiments were conducted to illustrate the performance of the proposed algorithm.
机译:由于其固有的复杂性,高光谱图像(HSI)的聚类是一项非常具有挑战性的任务。在本文中,我们提出了一种用于高光谱遥感图像的光谱空间稀疏子空间聚类新算法。首先,通过将每种土地覆盖类别都视为一个子空间,我们将稀疏子空间聚类(SSC)算法引入HSI。然后,考虑到HSI的光谱和空间特性,在SSC模型中考虑HSI的高光谱相关性和丰富的空间信息,以获得更准确的系数矩阵,用于构建相邻矩阵。最后,将光谱聚类应用于相邻矩阵以获得最终聚类结果。进行了一些实验来说明所提出算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号