首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Multisource Geospatial Data Fusion via Local Joint Sparse Representation
【24h】

Multisource Geospatial Data Fusion via Local Joint Sparse Representation

机译:通过局部联合稀疏表示进行多源地理空间数据融合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an adaptive locality weighted multisource joint sparse representation classification (ALWMJ-SRC) model for the classification of multisource remote sensing data. Although the notion of multitask joint sparsity has been recently developed for data fusion and has shown to be effective for various applications, in this paper, we suggest that there are important limitations stemming from the assumptions in such a framework. We propose a formulation that is inspired by this approach yet addresses some of the key shortcomings (e.g., uniform weights and unstable estimation of coefficients), resulting in a more robust formulation for data fusion. Specifically, we impose an adaptive locality weight to constrain the sparse coefficients, which not only considers the locality information between the test sample and the atoms in the dictionary but also helps ensure that the coefficients are adaptively penalized, reducing estimation bias. The adaptive locality weight is calculated for each source, which ensures that complementary information is employed from different sources for fusion. The optimization problem is solved using an alternating-direction-methods-of-multipliers formulation. In addition, the proposed algorithm is extended to the kernel space. The efficacy of the proposed algorithm is validated via experiments for two fusion scenarios—spectral–spatial classification and hyperspectral-LiDAR sensor fusion. The experimental results demonstrate that ALWMJ-SRC consistently performs better than state-of-the-art classification approaches.
机译:本文针对多源遥感数据的分类提出了一种自适应局部加权多源联合稀疏表示分类模型(ALWMJ-SRC)。尽管多任务联合稀疏性的概念最近已经开发出来用于数据融合,并且已经证明对于多种应用程序是有效的,但是在本文中,我们建议从这样一个框架中的假设出发,存在重要的局限性。我们提出了一种受此方法启发的公式,但解决了一些关键缺点(例如,权重均一和系数的不稳定估计),从而为数据融合提供了更强大的公式。具体来说,我们施加自适应局部权重来约束稀疏系数,这不仅考虑了测试样本与字典中原子之间的局部信息,而且还有助于确保系数被自适应地惩罚,从而减少了估计偏差。为每个来源计算自适应局部权重,以确保从不同来源采用补充信息进行融合。使用乘数的交替方向方法公式解决了优化问题。另外,该算法被扩展到内核空间。通过对两种融合方案的实验验证了所提算法的有效性:光谱空间分类和高光谱-LiDAR传感器融合。实验结果表明,ALWMJ-SRC的性能始终优于最新的分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号