首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Kernel Low-Rank and Sparse Graph for Unsupervised and Semi-Supervised Classification of Hyperspectral Images
【24h】

Kernel Low-Rank and Sparse Graph for Unsupervised and Semi-Supervised Classification of Hyperspectral Images

机译:高光谱图像的无监督和半监督分类的核低秩和稀疏图

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a graph representation that is based on the assumption that data live on a union of manifolds. Such a representation is based on sample proximities in reproducing kernel Hilbert spaces and is thus linear in the feature space and nonlinear in the original space. Moreover, it also expresses sample relationships under sparse and low-rank constraints, meaning that the resulting graph will have limited connectivity (sparseness) and that samples belonging to the same group will be likely to be connected together and not with those from other groups (low rankness). We present this graph representation as a general representation that can be then applied to any graph-based method. In the experiments, we consider the clustering of hyperspectral images and semi-supervised classification (one class and multiclass).
机译:在本文中,我们提出了一种图形表示形式,该表示形式基于以下假设:数据生活在流形的并集上。这样的表示基于再现内核希尔伯特空间中的样本邻近度,因此在特征空间中是线性的,而在原始空间中是非线性的。此外,它还表达了稀疏和低秩约束下的样本关系,这意味着结果图将具有有限的连通性(稀疏性),并且属于同一组的样本可能会连接在一起,而不是与其他组的样本连接在一起(低等级)。我们以一般表示形式呈现此图表示形式,然后可以将其应用于任何基于图的方法。在实验中,我们考虑了高光谱图像的聚类和半监督分类(一类和多类)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号