首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >SAR Image Despeckling by the Use of Variational Methods With Adaptive Nonlocal Functionals
【24h】

SAR Image Despeckling by the Use of Variational Methods With Adaptive Nonlocal Functionals

机译:使用具有自适应非局部功能的变分方法对SAR图像进行去斑

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we focus on the despeckling of synthetic aperture radar (SAR) images by variational methods which introduce nonlocal regularization functionals. To achieve this goal, two models are investigated from different aspects. The first model is derived for the logarithmically transformed (homomorphic) domain of the SAR data, and the other is derived for the original (nonhomomorphic) domain. The statistical properties of the speckle and the log-transformed speckle are analyzed, and the similarity measurements between pixels in the homomorphic domain and nonhomomorphic domain are then derived for constructing the corresponding nonlocal regularization functionals. Meanwhile, in the proposed models, we develop a strategy to adaptively choose the regularization parameters based on both the local heterogeneity information and the noise level of the images, aiming at getting a better balance between the goodness of fit of the original data and the amount of smoothing. A quasi-Newton iteration method is employed to quickly minimize the proposed adaptive nonlocal functionals. Experiments conducted on both simulated images and real SAR images confirm the good performances of the proposed methods, both in reducing speckle and preserving image quality.
机译:在本文中,我们重点介绍通过引入非局部正则化函数的变分方法对合成孔径雷达(SAR)图像进行去斑。为了实现这一目标,从不同方面研究了两个模型。第一个模型针对SAR数据的对数转换(同态)域,而另一个模型针对原始(非同态)域。分析斑点和对数变换斑点的统计特性,然后导出同构域和非同构域中像素之间的相似性度量,以构造相应的非局部正则化函数。同时,在提出的模型中,我们基于局部异质性信息和图像的噪声水平开发了一种自适应选择正则化参数的策略,目的是在原始数据的拟合优度和数量之间取得更好的平衡。平滑。拟牛顿迭代方法用于快速最小化建议的自适应非局部函数。在模拟图像和真实SAR图像上进行的实验证实了所提出方法在减少斑点和保持图像质量方面均具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号