首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Compressed-Sensing-Based Pan-Sharpening Method for Spectral Distortion Reduction
【24h】

A Compressed-Sensing-Based Pan-Sharpening Method for Spectral Distortion Reduction

机译:一种基于压缩感知的平移锐化方法以减少光谱失真

获取原文
获取原文并翻译 | 示例

摘要

Recently, the compressed sensing (CS) theory has become an interesting topic for pan-sharpening of multispectral images. The CS theory ensures that, under the sparsity regularization, an unknown sparse signal can be exactly recovered from a drastically smaller number of linear measurements. In this paper, we propose a CS-based approach for fusion of the multispectral and panchromatic satellite images. The contribution of this paper is twofold. First, with the spatial and spectral characteristics of the satellite images, we assume that each patch of the unknown high spatial resolution intensity (HRI) component can be represented as a linear combination of atoms in a dictionary trained only from the panchromatic image; thus, the problem of generating an optimal dictionary is solved. Second, we propose an iterative algorithm to obtain the sparsest coefficients. The sparsest coefficients ensure that the estimated HRI component can be correctly recovered from the panchromatic image. The IKONOS, QuickBird, and WorldView-2 data are used to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed method generates high-quality pan-sharpened multispectral bands quantitatively and perceptually.
机译:近来,压缩感测(CS)理论已成为多光谱图像的全景锐化的有趣话题。 CS理论确保在稀疏正则化条件下,可以从数量大大减少的线性测量中准确恢复未知的稀疏信号。在本文中,我们提出了一种基于CS的方法来融合多光谱和全色卫星图像。本文的贡献是双重的。首先,利用卫星图像的空间和光谱特性,我们假设未知的高空间分辨率强度(HRI)分量的每个斑块都可以表示为仅从全色图像训练的字典中原子的线性组合;因此,解决了生成最佳词典的问题。其次,我们提出了一种迭代算法来获得最稀疏的系数。最小的系数确保可以从全色图像中正确恢复估计的HRI分量。 IKONOS,QuickBird和WorldView-2数据用于评估所提出方法的性能。实验结果表明,该方法可以定量和感知地产生高质量的全锐化多谱带。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号