首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features
【24h】

Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features

机译:基于上下文信息建模和纹理特征的极化SAR图像分类

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel contextual method for classification of polarimetric synthetic aperture radar data. The method combines support vector machine (SVM) and Wishart classifiers to benefit from both parametric and nonparametric methods. This method computes the energy function of a Markov random field (MRF) in the neighborhoods of the pixel using Wishart distribution. It then relates the Markovian energydifference function to the SVM classifier. Therefore, the salt-and-pepper effect on the classified map is reduced using a contextual classifier. Moreover, to achieve the full advantage of spatial information, texture features are added into the contextual classification. Texture features are extracted from SPAN images and are added to the SVM classifier. In this paper, two Radarsat-2 polarimetric images acquired in the leaf-off and leaf-on seasons are used from a forest area. Efficient multitemporal information is exploited using composite kernels in SVM. Comparison of the proposed algorithm with the Wishart, Wishart-MRF, SVM, and SVM with composite kernel classifiers shows a 21.72%, 16.17%, 11.29%, and 8.19% improvement in overall accuracy, respectively. Moreover, incorporating texture features into classification results significant increase in the average accuracy in forest species compared with the use of only polarimetric features.
机译:本文提出了一种新型的极化合成孔径雷达数据分类方法。该方法将支持向量机(SVM)和Wishart分类器结合在一起,可从参数方法和非参数方法中受益。此方法使用Wishart分布计算像素邻域中的马尔可夫随机场(MRF)的能量函数。然后将马尔可夫能量差函数与SVM分类器关联。因此,使用上下文分类器减少了对分类地图的盐和胡椒的影响。此外,为了充分利用空间信息的优势,可以将纹理特征添加到上下文分类中。从SPAN图像中提取纹理特征,并将其添加到SVM分类器中。在本文中,使用了来自森林区域的两个在叶季和叶季采集的Radarsat-2偏振图像。使用SVM中的复合内核可以开发有效的多时间信息。将该算法与带有复合核分类器的Wishart,Wishart-MRF,SVM和SVM进行比较,分别显示出总体准确性分别提高了21.72%,16.17%,11.29%和8.19%。此外,与仅使用偏振特征相比,将纹理特征合并到分类中可显着提高森林物种的平均准确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号