首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Improved Salient Feature-Based Approach for Automatically Separating Photosynthetic and Nonphotosynthetic Components Within Terrestrial Lidar Point Cloud Data of Forest Canopies
【24h】

Improved Salient Feature-Based Approach for Automatically Separating Photosynthetic and Nonphotosynthetic Components Within Terrestrial Lidar Point Cloud Data of Forest Canopies

机译:改进的基于显着特征的森林冠层陆地激光点云数据内光合和非光合成分自动分离方法

获取原文
获取原文并翻译 | 示例

摘要

Accurate separation of photosynthetic and nonphotosynthetic components in a forest canopy from 3-D terrestrial laser scanning (TLS) data is a challenging but of key importance to understand the spatial distribution of the radiation regime, photosynthetic processes, and carbon and water exchanges of the forest canopy. The objective of this paper was to improve current methods for separating photosynthetic and nonphotosynthetic components in TLS data of forest canopies by adding two additional filters only based on its geometric information. By comparing the proposed approach with the eigenvalues plus color information-based method, we found that the proposed approach could effectively improve the overall producer's accuracy from 62.12% to 95.45%, and the overall classification producer's accuracy would increase from 84.28% to 97.80% as the forest leaf area index (LAI) decreases from 4.15 to 3.13. In addition, variations in tree species had negligible effects on the final classification accuracy, as shown by the overall producer's accuracy for coniferous (93.09%) and broadleaf (94.96%) trees. To remove quantitatively the effects of the woody materials in a forest canopy for improving TLS-based LAI estimates, we also computed the “woody-to-total area ratio” based on the classified linear class points from an individual tree. Automatic classification of the forest point cloud data set will facilitate the application of TLS on retrieving 3-D forest canopy structural parameters, including LAI and leaf and woody area ratios.
机译:从3-D陆地激光扫描(TLS)数据中准确地分离出森林冠层中的光合和非光合成分是一项具有挑战性的工作,但对于理解森林的辐射状况,光合过程以及碳和水交换的空间至关重要天篷。本文的目的是通过仅基于其几何信息添加两个额外的过滤器来改进当前的方法来分离森林冠层TLS数据中的光合和非光合成分。通过将该方法与基于特征值加颜色信息的方法进行比较,我们发现该方法可以有效地将生产者的整体准确度从62.12%提高到95.45%,将分类器的整体准确度从84.28%提高到97.80%。森林叶面积指数(LAI)从4.15降低到3.13。此外,树种的变化对最终分类准确度的影响可以忽略不计,针叶树(93.09%)和阔叶树(94.96%)的总体生产者准确度表明。为了定量消除林冠中木质材料对改进基于TLS的LAI估计值的影响,我们还基于来自单个树木的线性分类点,计算了“木质与总面积之比”。森林点云数据集的自动分类将有助于TLS在检索3-D森林冠层结构参数(包括LAI以及叶和木面积比)中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号