首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Despeckling of SAR Image Using Generalized Guided Filter With Bayesian Nonlocal Means
【24h】

Despeckling of SAR Image Using Generalized Guided Filter With Bayesian Nonlocal Means

机译:使用具有贝叶斯非局部均值的广义导引滤波器对SAR图像进行去斑

获取原文
获取原文并翻译 | 示例

摘要

Due to the coherent nature of the scattering phenomenon, synthetic aperture radar (SAR) images are inherently contaminated by multiplicative speckle noise, which makes despeckling always a fundamental problem for SAR image processing. Motivated by the idea of the guided image filter, we propose an extended despeckling scheme named generalized guided filter with Bayesian nonlocal means (GGF-BNLM). Our main contributions are as follows: 1) We successfully deduce the nonlinear weight kernel of the GGF-BNLM framework; and 2) we construct the guidance image using homogeneity analysis of local regions and the maximum-likelihood rule. Visual and quantitative experiments conducted on synthetic speckle images and real SAR images show that our method notably suppresses speckle with unperceivable detail blurring and better preserving of point-type strong scatters, which outperforms several classical and state-of-the-art methods.
机译:由于散射现象的相干性,合成孔径雷达(SAR)图像固有地受到乘法斑点噪声的污染,这使得去斑点始终是SAR图像处理的基本问题。受制于引导图像滤波器的思想,我们提出了一种扩展的去斑点方案,称为贝叶斯非局部均值(GGF-BNLM)广义引导滤波器。我们的主要贡献如下:1)成功推导了GGF-BNLM框架的非线性权重核。 2)我们使用局部区域的均匀性分析和最大似然法则来构建引导图像。在合成散斑图像和真实SAR图像上进行的视觉和定量实验表明,我们的方法显着地抑制了散斑,具有难以察觉的细节模糊,并更好地保留了点型强散点,其性能优于几种经典和最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号