首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Spatial Group Sparsity Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing
【24h】

Spatial Group Sparsity Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing

机译:高光谱解混的空间群稀疏性正则化非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

In recent years, blind source separation (BSS) has received much attention in the hyperspectral unmixing field due to the fact that it allows the simultaneous estimation of both endmembers and fractional abundances. Although great performances can be obtained by the BSS-based unmixing methods, the decomposition results are still unstable and sensitive to noise. Motivated by the first law of geography, some recent studies have revealed that spatial information can lead to an improvement in the decomposition stability. In this paper, the group-structured prior information of hyperspectral images is incorporated into the nonnegative matrix factorization optimization, where the data are organized into spatial groups. Pixels within a local spatial group are expected to share the same sparse structure in the low-rank matrix (abundance). To fully exploit the group structure, image segmentation is introduced to generate the spatial groups. Instead of a predefined group with a regular shape (e.g., a cross or a square window), the spatial groups are adaptively represented by superpixels. Moreover, the spatial group structure and sparsity of the abundance are integrated as a modified mixed-norm regularization to exploit the shared sparse pattern, and to avoid the loss of spatial details within a spatial group. The experimental results obtained with both simulated and real hyperspectral data confirm the high efficiency and precision of the proposed algorithm.
机译:近年来,由于盲源分离(BSS)可以同时估计端成员和分数丰度,因此在高光谱分解领域受到了广泛关注。尽管可以通过基于BSS的分解方法获得出色的性能,但是分解结果仍然不稳定并且对噪声敏感。受地理第一定律的驱使,最近的一些研究表明,空间信息可以改善分解稳定性。本文将高光谱图像的组结构先验信息纳入非负矩阵分解优化,将数据组织成空间组。局部空间组内的像素应在低秩矩阵(丰度)中共享相同的稀疏结构。为了充分利用组结构,引入了图像分割以生成空间组。代替具有规则形状的预定组(例如,十字形或正方形窗口),空间组由超像素自适应地表示。此外,将空间群的结构和丰度的稀疏性作为改进的混合范数正则化进行整合,以利用共享的稀疏模式,并避免空间群内空间细节的丢失。利用模拟和真实高光谱数据获得的实验结果证实了该算法的高效性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号