首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Novel Adaptive Fuzzy Local Information -Means Clustering Algorithm for Remotely Sensed Imagery Classification
【24h】

A Novel Adaptive Fuzzy Local Information -Means Clustering Algorithm for Remotely Sensed Imagery Classification

机译:遥感影像分类的新型自适应模糊局部信息均值聚类算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating the local spatial and gray level information constraints. The ADFLICM approach can enhance the conventional fuzzy c-means algorithm by producing homogeneous segmentation and reducing the edge blurring artifact simultaneously. The major contribution of ADFLICM is use of the new fuzzy local similarity measure based on pixel spatial attraction model, which adaptively determines the weighting factors for neighboring pixel effects without any experimentally set parameters. The weighting factor for each neighborhood is fully adaptive to the image content, and the balance between insensitiveness to noise and reduction of edge blurring artifact to preserve image details is automatically achieved by using the new fuzzy local similarity measure. Four different types of images were used in the experiments to examine the performance of ADFLICM. The experimental results indicate that ADFLICM produces greater accuracy than the other four methods and hence provides an effective clustering algorithm for classification of remotely sensed imagery.
机译:本文提出了一种新颖的自适应模糊局部信息c均值(ADFLICM)聚类方法,该方法通过结合局部空间和灰度信息约束来进行遥感影像分类。 ADFLICM方法可以通过产生均匀分割并同时减少边缘模糊伪像来增强传统的模糊c均值算法。 ADFLICM的主要贡献是使用了基于像素空间吸引力模型的新型模糊局部相似性度量,该度量无需任何实验设置的参数即可自适应地确定相邻像素效果的加权因子。每个邻域的加权因子完全适应于图像内容,并且通过使用新的模糊局部相似性度量自动实现了对噪声不敏感和减少边缘模糊伪影以保留图像细节之间的平衡。实验中使用了四种不同类型的图像来检查ADFLICM的性能。实验结果表明,ADFLICM比其他四种方法产生的精度更高,因此为遥感影像的分类提供了有效的聚类算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号