首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Predictive Lossless Compression of Regions of Interest in Hyperspectral Images With No-Data Regions
【24h】

Predictive Lossless Compression of Regions of Interest in Hyperspectral Images With No-Data Regions

机译:无数据区域的高光谱图像中感兴趣区域的预测无损压缩

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of efficient predictive lossless compression on the regions of interest (ROIs) in the hyperspectral images with no-data regions. We propose a two-stage prediction scheme, where a context-similarity-based weighted average prediction is followed by recursive least square filtering to decorrelate the hyperspectral images for compression. We then propose to apply separate Golomb–Rice codes for coding the prediction residuals of the full-context pixels and boundary pixels, respectively. To study the coding gains of this separate coding scheme, we introduce a mixture geometric model to represent the residuals associated with various combinations of the full-context pixels and boundary pixels. Both information-theoretic analysis and simulations on synthetic data confirm the advantage of the separate coding scheme over the conventional coding method based on a single underlying geometric distribution. We apply the aforementioned prediction and coding methods to four publicly available hyperspectral image data sets, attaining significant improvements over several other state-of-the-art methods, including the shape-adaptive JPEG 2000 method.
机译:本文解决了无数据区域的高光谱图像中感兴趣区域(ROI)上有效预测性无损压缩的问题。我们提出了一个两阶段的预测方案,其中基于上下文相似度的加权平均预测之后是递归最小二乘滤波,以对高光谱图像进行解压缩。然后,我们建议应用单独的Golomb-Rice码分别对完整上下文像素和边界像素的预测残差进行编码。为了研究这种单独编码方案的编码增益,我们引入了混合几何模型来表示与全上下文像素和边界像素的各种组合相关的残差。信息理论分析和对合成数据的仿真都证实了基于传统的基于单个基础几何分布的编码方法优于传统编码方法的优势。我们将上述预测和编码方法应用于四个公共可用的高光谱图像数据集,与包括形状自适应JPEG 2000方法在内的其他几种最新方法相比,有了明显的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号