首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Learning-Based Spatial–Temporal Superresolution Mapping of Forest Cover With MODIS Images
【24h】

Learning-Based Spatial–Temporal Superresolution Mapping of Forest Cover With MODIS Images

机译:基于学习的MODIS图像对森林覆盖的时空超分辨率映射

获取原文
获取原文并翻译 | 示例

摘要

Forest mapping from satellite sensor imagery provides important information for the timely monitoring of forest growth and deforestation, bioenergy potential assessment, and modeling of carbon flux, among others. Due to the daily global revisit rate and wide swath width, MODerate-resolution Imaging Spectroradiometer (MODIS) images are used commonly for satellite-derived forest mapping at both regional and global scales. However, the spatial resolution of MODIS images is too coarse to observe fine spatial variation in forest cover. The last few decades have seen the production of several fine-spatial-resolution satellite-derived global forest cover maps, such as Hansen’s global tree canopy cover map of 2000, which includes abundant spectral, temporal, and spatial prior information about forest cover at a fine spatial resolution. In this paper, a novel learning-based spatial–temporal superresolution mapping approach is proposed to integrate both current MODIS images and prior maps of Hansen’s tree canopy cover, to map present forest cover with a fine spatial resolution. The novel approach is composed of three main stages: 1) automatic generation of 240-m forest proportion images from both 240- and 480-m MODIS images using a nonlinear learning-based spectral unmixing method; 2) downscaling the 240-m forest proportion images to 30 m to predict the class possibilities at the subpixel scale using a temporal-example learning-based downscaling method; and 3) final production of the fine-spatial-resolution forest map by solving a regularization-based optimization problem. The novel approach produced more accurate fine-spatial-resolution forest cover maps in terms of both visual and quantitative evaluation than traditional pixel-based classification and the latest subpixel based superresolution mapping methods. The results show the great efficiency and potential of the novel approach for producing fine-spatial-resolution forest maps from MODIS images.
机译:卫星传感器图像中的森林制图为及时监测森林的生长和森林砍伐,生物能源潜力评估以及碳通量建模等提供了重要信息。由于每天的全球重访率和广泛的幅宽,现代分辨率成像光谱仪(MODIS)图像通常用于区域和全球范围的卫星衍生森林制图。但是,MODIS图像的空间分辨率太粗糙,无法观察到森林覆盖率的精细空间变化。在过去的几十年中,已经制作了几张由空间分辨率高的卫星衍生的全球森林覆盖图,例如汉森(Hansen)的2000年全球树木冠层覆盖图,其中包括了丰富的光谱,时间和空间先验信息。精细的空间分辨率。在本文中,提出了一种新颖的基于学习的时空超分辨率映射方法,该方法将当前的MODIS图像和汉森树冠覆盖的先前地图集成在一起,以精细的空间分辨率来映射当前的森林覆盖。这种新颖的方法包括三个主要阶段:1)使用基于非线性学习的光谱分解方法从240和480 m的MODIS图像自动生成240 m的森林比例图像; 2)使用基于时间示例的基于学习的降尺度方法将240米的森林比例图像降尺度为30 m,以预测亚像素尺度的分类可能性; 3)通过解决基于正则化的优化问题来最终生成精细空间分辨率的森林图。与传统的基于像素的分类和基于最新的基于亚像素的超分辨率映射方法相比,这种新颖的方法在视觉和定量评估方面产生了更准确的精细空间分辨率的森林覆盖图。结果表明,该新方法从MODIS图像生成精细空间分辨率森林地图的巨大效率和潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号