首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Source Wavefield Reconstruction in Fractional Laplacian Viscoacoustic Wave Equation-Based Full Waveform Inversion
【24h】

Source Wavefield Reconstruction in Fractional Laplacian Viscoacoustic Wave Equation-Based Full Waveform Inversion

机译:基于分数拉普拉斯粘层波形的全波形反演的源波场重建

获取原文
获取原文并翻译 | 示例

摘要

We develop a fractional Laplacian viscoacoustic wave equation-based full waveform inversion (FWI) method. The main novelty is efficient reconstruction of the source wavefields in gradient computation by the adjoint state method. Our FW1 is based on Fourier pseudo-spectral time-domain (PSTD) numerical solutions of the fractional Laplacian viscoacoustic wave equation, which can describe the frequency independent Q (quality factor) behaviors of seismic waves accurately. The presented wavefield reconstruction strategy utilizes reverse time-marching formulae to compute the source wavefields backward in time, including an implicit formula in the interior domain and an explicit one in the perfectly matched layer (PML) absorbing domains. Since the wavefields in the entire domain are recovered, our method does not require storing massive boundary values like conventional reconstruction methods. To avoid numerical instability in reverse time reconstruction, we design a global-local checkpointing technique. When reverse time reconstruction encounters numerical instability, the forward propagation restarts from the nearest global checkpoint and proceeds to the unstable time step. Then, the reverse time reconstruction continues. The local checkpoints help to delay the numerical instability in the PML domains. Numerical examples verify the feasibility of our reconstruction strategy and the efficiency gain achieved by using this strategy in FWI.
机译:我们开发了一种基于分数拉普拉斯粘层声波方程的全波形反演(FWI)方法。主要的新颖性是伴随状态方法的梯度计算中源波的高效重建。我们的FW1基于分数拉普拉斯粘性波动波方程的傅里叶伪光谱时域(PSTD)数值解,其可以准确地描述地震波的频率独立Q(质量因数)行为。所提出的波场重建策略利用相反的时间游行公式来计算源波场,并在时间上包括内部域中的隐式公式,以及在完美匹配的层(PML)吸收域中的显式α。由于恢复了整个域中的波场,因此我们的方法不需要存储像传统的重建方法一样的大量边界值。为避免反时重建中的数值不稳定,我们设计了全球本地检查点技术。当相反时间重建遇到数值不稳定性时,前向传播从最近的全局检查点重新启动,并进入不稳定的时间步长。然后,相反的时间重建继续。本地检查点有助于延迟PML域中的数值不稳定性。数值例子验证了我们的重建战略的可行性以及通过在FWI中使用此策略实现的效率增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号