首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Clutter Removal in Through-the-Wall Radar Imaging Using Sparse Autoencoder With Low-Rank Projection
【24h】

Clutter Removal in Through-the-Wall Radar Imaging Using Sparse Autoencoder With Low-Rank Projection

机译:使用稀疏AutoEncoder具有低秩投影的杂交雷达成像杂乱

获取原文
获取原文并翻译 | 示例

摘要

Through-the-wall radar imaging is a sensing technology that can be used by first responders to see through obscure barriers during search-and-rescue missions or deployed by law enforcement and military personnel to maintain situational awareness during tactical operations. However, the strong reflections from the front wall and other obstacles render the detection of stationary targets very difficult. In this article, a learning-based approach is proposed to mitigate the effect of the wall and background clutter. A sparse autoencoder with a low-rank projection is developed to mitigate the wall clutter and recover the target signal. The weights of the proposed autoencoder are determined by solving an augmented Lagrange multiplier optimization problem, and the regularization parameters are estimated using the Bayesian optimization technique. Experiments using real data from a stepped-frequency radar were conducted to illustrate its effectiveness for wall clutter removal. The results show that the proposed method achieves superior performance compared with the existing approaches.
机译:穿过壁雷达成像是一种传感技术,可以通过第一响应者使用,在搜救任务期间通过模糊障碍,或者由执法和军人部署,以维持在战术行动期间的情境意识。然而,来自前壁和其他障碍的强烈反射使得静止目标的检测非常困难。在本文中,提出了一种基于学习的方法来减轻墙壁和背景杂波的效果。开发出具有低秩投影的稀疏自动码器以减轻墙壁杂波并恢复目标信号。通过求解增强拉格朗日乘数优化问题来确定所提出的AutoEncoder的权重,并且使用贝叶斯优化技术估计正则化参数。进行了来自阶梯频率雷达的实际数据的实验,以说明其对壁杂波去除的有效性。结果表明,与现有方法相比,该方法达到了卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号