首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Deep Unsupervised Embedding for Remotely Sensed Images Based on Spatially Augmented Momentum Contrast
【24h】

Deep Unsupervised Embedding for Remotely Sensed Images Based on Spatially Augmented Momentum Contrast

机译:基于空间增强的动量对比度,深度无监督嵌入遥感图像

获取原文
获取原文并翻译 | 示例

摘要

Convolutional neural networks (CNNs) have achieved great success when characterizing remote sensing (RS) images. However, the lack of sufficient annotated data (together with the high complexity of the RS image domain) often makes supervised and transfer learning schemes limited from an operational perspective. Despite the fact that unsupervised methods can potentially relieve these limitations, they are frequently unable to effectively exploit relevant prior knowledge about the RS domain, which may eventually constrain their final performance. In order to address these challenges, this article presents a new unsupervised deep metric learning model, called spatially augmented momentum contrast (SauMoCo), which has been specially designed to characterize unlabeled RS scenes. Based on the first law of geography, the proposed approach defines spatial augmentation criteria to uncover semantic relationships among land cover tiles. Then, a queue of deep embeddings is constructed to enhance the semantic variety of RS tiles within the considered contrastive learning process, where an auxiliary CNN model serves as an updating mechanism. Our experimental comparison, including different state-of-the-art techniques and benchmark RS image archives, reveals that the proposed approach obtains remarkable performance gains when characterizing unlabeled scenes since it is able to substantially enhance the discrimination ability among complex land cover categories. The source codes of this article will be made available to the RS community for reproducible research.
机译:卷积神经网络(CNNS)在表征遥感(RS)图像时取得了巨大的成功。然而,缺乏足够的注释数据(以及RS​​图像域的高复杂性)经常使监督和转移学习方案限制在操作角度来上。尽管无监督的方法可能会缓解这些限制,但它们经常无法有效利用关于RS领域的相关知识,这可能最终限制了他们的最终表现。为了解决这些挑战,本文提出了一个新的无监督的深度度量学习模型,称为空间增强的势头对比(Saumoco),该模型专门设计用于表征未标记的RS场景。基于地理的第一定律,所提出的方法定义了空间增强标准,以发现陆地覆盖瓷砖之间的语义关系。然后,构建深度嵌入的队列以增强所考虑的对比学习过程中的RS瓦片的语义种类,其中辅助CNN模型用作更新机制。我们的实验比较包括不同的最先进的技术和基准RS图像档案,揭示了所提出的方法在表征未标记的场景时获得了显着的性能增益,因为它能够大大提高复杂的土地覆盖类别之间的辨别能力。本文的源代码将用于RS社区以进行可重复的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号