首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Building Footprint Generation by Integrating Convolution Neural Network With Feature Pairwise Conditional Random Field (FPCRF)
【24h】

Building Footprint Generation by Integrating Convolution Neural Network With Feature Pairwise Conditional Random Field (FPCRF)

机译:通过将卷积神经网络与特征成对条件随机字段(FPCRF)集成卷积神经网络构建占用

获取原文
获取原文并翻译 | 示例

摘要

Building footprint maps are vital to many remote sensing (RS) applications, such as 3-D building modeling, urban planning, and disaster management. Due to the complexity of buildings, the accurate and reliable generation of the building footprint from RS imagery is still a challenging task. In this article, an end-to-end building footprint generation approach that integrates convolution neural network (CNN) and graph model is proposed. CNN serves as the feature extractor, while the graph model can take spatial correlation into consideration. Moreover, we propose to implement the feature pairwise conditional random field (FPCRF) as a graph model to preserve sharp boundaries and fine-grained segmentation. Experiments are conducted on four different data sets: 1) Planetscope satellite imagery of the cities of Munich, Paris, Rome, and Zurich; 2) ISPRS Benchmark data from the city of Potsdam; 3) Dstl Kaggle data set; and 4) Inria Aerial Image Labeling data of Austin, Chicago, Kitsap County, Western Tyrol, and Vienna. It is found that the proposed end-to-end building footprint generation framework with the FPCRF as the graph model can further improve the accuracy of building footprint generation by using only CNN, which is the current state of the art.
机译:构建足迹图对许多遥感(RS)应用,如3-D建筑建模,城市规划和灾害管理至关重要。由于建筑物的复杂性,RS Imagery的建筑足迹的准确性和可靠的一代仍然是一个具有挑战性的任务。在本文中,提出了一种集成卷积神经网络(CNN)和图形模型的端到端构建占用方法。 CNN用作特征提取器,而图形模型可以考虑到空间相关性。此外,我们建议将特征成对条件随机字段(FPCRF)作为图形模型实现,以保持尖锐的边界和细粒度的分割。实验是在四种不同的数据集中进行:1)慕尼黑,巴黎,罗马和苏黎世城市的卫星卫星图像; 2)来自波茨坦市的ISPRS基准数据; 3)DSTL Kaggle数据集; 4)Inria Austin,芝加哥,Kitsap县,蒂罗尔和维也纳奥斯汀的空中图像标记数据。结果发现,与图形模型的CNN仅使用CNN的建筑占地面积的准确性,所提出的端到端建筑占用框架可以进一步提高构建足迹的准确性,这是本领域的当前状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号