首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Multipass SAR Interferometry Based on Total Variation Regularized Robust Low Rank Tensor Decomposition
【24h】

Multipass SAR Interferometry Based on Total Variation Regularized Robust Low Rank Tensor Decomposition

机译:多峰SAR干涉测量法基于总变化正规化强大的低等级张量分解

获取原文
获取原文并翻译 | 示例

摘要

Multipass SAR interferometry (InSAR) techniques based on meter-resolution spaceborne SAR satellites, such as TerraSAR-X or COSMO-SkyMed, provide 3D reconstruction and the measurement of ground displacement over large urban areas. Conventional methods such as persistent scatterer interferometry (PSI) usually requires a fairly large SAR image stack (usually in the order of tens) to achieve reliable estimates of these parameters. Recently, low rank property in multipass InSAR data stack was explored and investigated in our previous work (J. Kang et al., "Object-based multipass InSAR via robust low-rank tensor decomposition," IEEE Trans. Geosci. Remote Sens., vol. 56, no. 6, 2018). By exploiting this low rank prior, a more accurate estimation of the geophysical parameters can be achieved, which in turn can effectively reduce the number of interferograms required for a reliable estimation. Based on that, this article proposes a novel tensor decomposition method in a complex domain, which jointly exploits low rank and variational prior of the interferometric phase in InSAR data stacks. Specifically, a total variation (TV) regularized robust low rank tensor decomposition method is exploited for recovering outlier-free InSAR stacks. We demonstrate that the filtered InSAR data stacks can greatly improve the accuracy of geophysical parameters estimated from real data. Moreover, this article demonstrates for the first time in the community that tensor-decomposition-based methods can be beneficial for largescale urban mapping problems using multipass InSAR. Two TerraSAR-X data stacks with large spatial areas demonstrate the promising performance of the proposed method.
机译:基于仪表分辨率Sapornoy SAR卫星的多峰SAR干涉测量学(INSAR)技术,例如Terrasar-X或COSMO-SKEDMED,提供3D重建和大城区地面位移的测量。诸如持久性散射仪干涉测量(PSI)的常规方法通常需要相当大的SAR图像堆叠(通常按数十的顺序)来实现这些参数的可靠估计。最近,在我们以前的工作中探讨了多级和insar数据堆栈中的低秩属性(J.Kang等,“基于对象的基于对象的多级数据库,”IEEE Trans.Geosci。远程Sens。,第56卷,第6号。6,2018)。通过利用此低级之前,可以实现更准确的地球物理参数估计,这又可以有效地减少可靠估计所需的干涉图的数量。基于此,本文提出了一种复杂结构域中的新型张量分解方法,该方法在insar数据堆栈中共同利用低等级和干涉相的变化。具体地,用于恢复无异常的INSAR堆叠的总变化(TV)正则化稳健的低等级张量分解方法。我们证明过滤的insar数据堆栈可以大大提高从真实数据估计的地球物理参数的准确性。此外,本文在社区中首次演示了基于张解的分解的方法可以利用使用多人insar的大型城市映射问题。具有大型空间区域的两个Terrasar-X数据堆栈证明了所提出的方法的有希望的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号