首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Rain Detection From X-Band Marine Radar Images: A Support Vector Machine-Based Approach
【24h】

Rain Detection From X-Band Marine Radar Images: A Support Vector Machine-Based Approach

机译:X波段海洋雷达雨检测:基于支持向量机的方法

获取原文
获取原文并翻译 | 示例

摘要

Since rain alters the histogram pattern of radar images, rain-contaminated radar data can be identified. In this article, a support vector machine (SVM)-based method for rain detection using X-band marine radar images is presented. First, the normalized histogram bin values for each image are extracted and combined into feature vector. Then, SVMs are employed to classify between rain-free and rain-contaminated images. Radar images and simultaneous rain rate data collected from a sea trial in North Atlantic Ocean are utilized for model training and testing. Comparison with the zero pixel percentage (ZPP) threshold method shows that the SVM-based method obtains higher detection accuracy, with 98.4% for the Decca radar data and 99.7% for the Furuno radar. It is also found that as the total number of bins does not significantly affect detection accuracy, the proposed method can be applied to different radar systems directly with a suitable number of bins. In addition, compared to the ZPP threshold method, the SVM-based method proves to be more robust even with limited training samples.
机译:由于雨水改变了雷达图像的直方图模式,因此可以识别雨污污染的雷达数据。在本文中,呈现了使用X波段船舶雷达图像的用于雨量检测的支持向量机(SVM)方法。首先,提取每个图像的归一化直方图BIN值并组合成特征向量。然后,使用SVMS在无雨和雨污染的图像之间进行分类。从北大西洋海洋试验中收集的雷达图像和同时雨率数据用于模型培训和测试。与零像素百分比(ZPP)阈值方法的比较表明,基于SVM的方法获得更高的检测精度,对于DECCA雷达数据而98.4%,对于Furuno雷达99.7%。还发现,随着箱的总数不会显着影响检测精度,可以将所提出的方法直接用适当数量的垃圾箱应用于不同的雷达系统。另外,与ZPP阈值方法相比,即使具有有限的训练样本,基于SVM的方法也能够更加坚固。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号