首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Machine Learning System for Precipitation Estimation Using Satellite and Ground Radar Network Observations
【24h】

A Machine Learning System for Precipitation Estimation Using Satellite and Ground Radar Network Observations

机译:使用卫星和地雷达网络观测降水估计的机器学习系统

获取原文
获取原文并翻译 | 示例

摘要

Space-based precipitation products are often used for regional and/or global hydrologic modeling and climate studies. A number of precipitation products at multiple space and time scales have been developed based on satellite observations. However, their accuracy is limited due to the restrictions on spatiotemporal sampling of the satellite sensors and the applied parametric retrieval algorithms. Similarly, a ground-based weather radar is widely used for quantitative precipitation estimation (QPE), especially after the implementation of dual-polarization capability and urban scale deployment of high-resolution X-band radar networks. Ground-based radars are often used for the validation of various spaceborne measurements and products. This article introduces a novel machine learning-based data fusion framework to improve the satellite-based precipitation retrievals by incorporating dual-polarization measurements from a ground radar network. The prototype architecture of this fusion system is detailed. In particular, a deep learning multi-layer perceptron (MLP) model is designed to produce the rainfall estimates using the geostationary satellite infrared (IR) data and low earth orbit satellite passive microwave (PMW)-based retrievals as inputs. The high-quality rainfall products from the ground radar network are used as the target labels to train this MLP model. An urban scale demonstration study over the Dallas-Fort Worth (DFW) metroplex is presented. In addition, the Climate Prediction Center morphing technique (i.e., CMORPH) is adopted for preprocessing of the satellite observations. Rainfall products from this deep learning system are evaluated using the standard CMORPH products. The results show that the proposed data fusion framework can be used for generating accurate precipitation estimates and could be considered as an alternative tool for developing future satellite retrieval algorithms.
机译:基于空间的降水产品通常用于区域和/或全球水文建模和气候研究。已经基于卫星观测开发了多个空间和时间尺度的许多降水产品。然而,由于卫星传感器的时空采样和应用的参数检索算法的时空采样限制,它们的准确性受到限制。类似地,基于地基天气雷达广泛用于定量降水估计(QPE),尤其是在实现双极化能力和高分辨率X波段雷达网络的城市规模部署之后。地基雷达通常用于验证各种星载量和产品。本文介绍了一种基于新型机器学习的数据融合框架,可以通过从地雷达网络结合双极化测量来改善基于卫星的降水检索。本融合系统的原型架构详细说明。特别地,深入学习多层的Perceptron(MLP)模型旨在使用地静止卫星红外线(IR)数据和低地球轨道卫星被动微波(PMW)作为输入来生产降雨估计。地面雷达网络的高质量降雨产品用作培训此MLP型号的目标标签。展示了对达拉斯堡(DFW)Metroplex的城市规模示范研究。此外,采用气候预测中心变形技术(即Cmorph)用于预处理卫星观察。使用标准的CMORPH产品评估来自这种深度学习系统的降雨产品。结果表明,所提出的数据融合框架可用于产生准确的降水估计,并且可以被视为发展未来卫星检索算法的替代工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号