首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Unsupervised Multiregion Partitioning of Fully Polarimetric SAR Images With Advanced Fuzzy Active Contours
【24h】

Unsupervised Multiregion Partitioning of Fully Polarimetric SAR Images With Advanced Fuzzy Active Contours

机译:具有高级模糊活动轮廓的完全偏振的SAR图像的无监督多部偏振SAR图像

获取原文
获取原文并翻译 | 示例

摘要

This article proposes an unsupervised multiregion segmentation method for fully polarimetric synthetic aperture radar (polSAR) images based on the improved fuzzy active contour model. Different from most of the active contour models that are based on the utilization of only statistical information, the proposed method makes better use of information from polarimetric data. In addition to the statistical information, an edge detector modified from the ratio of exponentially weighted averages (ROEWA) operator, a sliding window algorithm for the total received power, and a ratio operator with respect to scattering mechanisms are integrated to the proposed active contour model. We then present a layer-based fuzzy active contour framework to solve our model. The general fuzzy active contour framework is computationally much more efficient compared with the level set-based framework; however, it cannot be applied to the multiregion segmentation of SAR images due to its low robustness to strong noise. The proposed approach includes the advantages of the general fuzzy active contour framework and has good robustness. Using two fully polSAR images demonstrates that the proposed method can achieve higher efficiency and a better segmentation performance in comparison with the commonly used active contour methods.
机译:本文提出了一种针对改进的模糊主动轮廓模型的完全偏振合成孔径雷达(POLSAR)图像的无监督多维度分割方法。不同于基于仅利用统计信息的大多数主动轮廓模型,该方法可以更好地利用来自偏振数据的信息。除了统计信息之外,从指数加权平均(ROEWA)操作者的比率,总接收功率的滑动窗口算法和相对于散射机制的比率运算符被修改的边缘检测器集成到所提出的主动轮廓模型。然后,我们提出了一种基于层的模糊活动轮廓框架来解决我们的模型。与基于级别的框架相比,一般模糊的活动轮廓框架与基于级别的框架相比,更有效;然而,由于其对强噪声的低稳健性,因此不能应用于SAR图像的多限分割。该方法包括一般模糊活动轮廓框架的优势,具有良好的鲁棒性。使用两个完全POLSAR图像表明,与常用的主动轮廓方法相比,所提出的方法可以实现更高的效率和更好的分割性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号