首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >An Integrated Approach to Registration and Fusion of Hyperspectral and Multispectral Images
【24h】

An Integrated Approach to Registration and Fusion of Hyperspectral and Multispectral Images

机译:高光谱和多光谱图像的注册和融合的综合方法

获取原文
获取原文并翻译 | 示例

摘要

Combining a hyperspectral (HS) image and a multispectral (MS) image-an example of image fusion-can result in a spatially and spectrally high-resolution image. Despite the plethora of fusion algorithms in remote sensing, a necessary prerequisite, namely registration, is mostly ignored. This limits their application to well-registered images from the same source. In this article, we propose and validate an integrated registration and fusion approach (code available at https://github.com/zhouyuanzxcv/Hyperspectral). The registration algorithm minimizes a least-squares (LSQ) objective function with the point spread function (PSF) incorporated together with a nonrigid freeform transformation applied to the HS image and a rigid transformation applied to the MS image. It can handle images with significant scale differences and spatial distortion. The fusion algorithm takes the full high-resolution HS image as an unknown in the objective function. Assuming that the pixels lie on a low-dimensional manifold invariant to local linear transformations from spectral degradation, the fusion optimization problem leads to a closed-form solution. The method was validated on the Pavia University, Salton Sea, and the Mississippi Gulfport datasets. When the proposed registration algorithm is compared to its rigid variant and two mutual information-based methods, it has the best accuracy for both the nonrigid simulated dataset and the real dataset, with an average error less than 0.15 pixels for nonrigid distortion of maximum 1 HS pixel. When the fusion algorithm is compared with current state-of-the-art algorithms, it has the best performance on images with registration errors as well as on simulations that do not consider registration effects.
机译:组合高光谱(HS)图像和多光谱(MS)图像 - 图像融合的示例 - 可以导致空间和光谱高分辨率图像。尽管遥感中的融合算法存在偏远的融合算法,但仍然是注册的必要先决条件,主要忽略了。这将其应用限制在来自同一来源的注册图像中。在本文中,我们提出并验证了综合注册和融合方法(在https://github.com/zhouyuanzxcv/hyperspectral提供的代码)。登记算法最小化与施加到HS图像上的非重物自由变换的点扩展功能(PSF)的最小二乘(LSQ)目标函数,并且施加到MS图像的刚性变换。它可以处理具有显着尺度差异和空间失真的图像。融合算法将全高分辨率HS映像作为目标函数中的未知。假设像素位于从频谱劣化的局部线性变换的低维歧管中,融合优化问题导致闭合形式的解决方案。该方法在Pavia University,Salton Sea和Mississippi Gulfport数据集上验证。当建议的注册算法与其刚性变体和基于两个相互信息的方法进行比较时,它对非重力模拟数据集和实际数据集具有最佳精度,平均误差小于0.15像素,用于最大1 HS的非身份失真像素。当融合算法与当前最先进的算法进行比较时,它在具有登记错误的图像上具有最佳性能以及不考虑注册效果的仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号