首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Physically Based Soil Moisture Index From Passive Microwave Brightness Temperatures for Soil Moisture Variation Monitoring
【24h】

A Physically Based Soil Moisture Index From Passive Microwave Brightness Temperatures for Soil Moisture Variation Monitoring

机译:土壤湿度变化监测无源微波亮度温度的物理基础土壤水分指数

获取原文
获取原文并翻译 | 示例

摘要

Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index (SMI), which aims to capture the temporal variability of SM, irrespective of cloud cover and solar illumination, was developed by using the L-band SM active passive (SMAP) radiometer observations. The SMI was proposed on the basis of two key foundations: 1) vegetation and roughness have similar effects on & x201C;depolarization & x201D; of microwave emission, while SM enhances polarization differences and 2) vegetation and roughness generally impose positive effects on surface emissivity, while SM and emissivity are negatively correlated. Based on the two physical principles, it is possible to decouple the effects of SM and those of vegetation and surface roughness in a 2-D space independent of vegetation type and roughness condition. The proposed SMI was then validated by in situ measurements from five dense SM networks covering different vegetation and climatic conditions and also compared with SMAP passive and European space agency climate change initiative (ESA CCI) SM products at a coarse resolution of 36 km, and SMAP-enhanced passive and Japan Aerospace Exploration Agency (JAXA) advanced microwave scanning radiometer (AMSR2) SM products at a medium resolution of 9 km. The results show that the new SMI is able to well reproduce the temporal dynamic of SM with a favorable averaged correlation coefficient value of 0.87 and 0.84 at 36 and 9 km, respectively, higher than that of SMAP passive (0.80), SMAP-enhanced passive (0.77), ESA CCI (0.69), and JAXA AMSR2 (0.53). After removing the systematic differences between satellite and site-specific SM data by using the cumulative distribution function (CDF) matching technique, the SMI can achieve an average root mean squared error (RMSE) of 0.031 and 0.036 m(3)m(& x2212;3) at 36 and 9 km during the validation period, respectively, lower than that of the satellite SM products. In addition to surface temperature, the SMI does not need any further information from other sensors [e.g., the optical normalized difference vegetation index (NDVI) or leaf area index (LAI) data] to guarantee an all-weather monitoring. Therefore, it has great potential to estimate SM variability on a global scale.
机译:土壤水分是一种枢轴水文变量,可连接陆地水,能量和碳循环。在本文中,通过使用L-BAND SM主动被动(SMAP)辐射计观察,开发了一种新的土壤湿度(SM)指数(SMI),目的是捕获SM的时间变化,而不管云覆盖和太阳能照明如何开发。 SMI是在两个关键基础的基础上提出的:1)植被和粗糙度对&x201c具有类似的效果;去极化和x201d;微波排放,而SM增强偏振差异,2)植被和粗糙度通常对表面发射率产生积极影响,而SM和发射率呈负相关。基于两种物理原则,可以在与植被类型和粗糙度条件无关的二维空间中与SM和植被和表面粗糙度的影响分离。然后通过<斜视>从五个致密的SM网络验证的拟议的SMI验证了覆盖不同植被和气候条件的5个密集的SM网络,也与Smap被动和欧洲空间机构气候变化倡议(ESA CCI)SM产品相比分辨率为36公里,散布增强被动和日本航空航天勘探机构(JAXA)先进的微波扫描辐射计(AMSR2)SM产品,媒介分辨率为9公里。结果表明,新的SMI能够在36和9公里处具有0.87和0.84的有利平均相关系数值的良好繁殖SM的时间动态,分别高于SMAP被动(0.80),微扫描增强被动(0.77),ESA CCI(0.69)和JAXA AMSR2(0.53)。通过使用累积分布函数(CDF)匹配技术去除卫星和站点特定的SM数据之间的系统差异后,SMI可以实现0.031和0.036米(3)M(&x2212的平均根部平均平均误差(RMSE)(&x2212 3)在验证期间分别在36和9公里,低于卫星SM产品的验证期。除了表面温度外,SMI还不需要来自其他传感器的任何进一步的信息[例如,光学归一化差异植被指数(NDVI)或叶面积指数(LAI)数据]以保证全天候监测。因此,它具有巨大的潜力来估计全球范围内的SM变异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号