首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Super-Resolution Doppler Velocity Estimation by Kernel-Based Range– au Point Conversions for UWB Short-Range Radars
【24h】

Super-Resolution Doppler Velocity Estimation by Kernel-Based Range– au Point Conversions for UWB Short-Range Radars

机译:基于内核的范围 - TAU点转换的超分辨率多普勒速度估计,用于UWB短程雷达

获取原文
获取原文并翻译 | 示例

摘要

Lower band ultrawideband (UWB) Doppler radar is promising for through-wall imaging, e.g., human body detection in rescue scenarios. The inherent problem with pulse-Doppler radar is the tradeoff between the Doppler velocity resolution and the resulting temporal resolution that makes it difficult to conduct real-time target tracking, because the separation of micro-Doppler velocities of the human body requires a higher Doppler velocity resolution. This problem is particularly severe for lower band UWB radar systems, which are required to attain a sufficient penetration depth in concrete material in the through-the-wall imaging scenario. Because UWB signals generally have large fractional bandwidths, the reflected pulse is located over a range gate along the slow-time direction; this is well known as the range walk problem. As a promising solution to this problem, this article newly introduces a technique for a super-resolution Doppler velocity estimation algorithm based on Gaussian kernel density estimation, which converts observed range & x2013; points to Doppler-associated ranges. In addition, this approach makes an important contribution for super-resolution range extraction with a compressed sensing (CS) filter, which is combined with the range-point migration (RPM) method for human body imaging associated with micro-Doppler components. 2-D or 3-D numerical simulations, including human body imaging scenario, demonstrate that the proposed method allows both accurate Doppler velocity estimation and human body imaging, which can be updated at the pulse-repetition interval.
机译:下频带超空间带(UWB)多普勒雷达对穿孔壁成像有前途,例如救援情景中的人体检测。脉冲 - 多普勒雷达的固有问题是多普勒速度分辨率和所得到的时间分辨率之间的折衷,这使得难以进行实时目标跟踪,因为人体的微多普勒速度的分离需要更高的多普勒速度解析度。该问题对于下频带UWB雷达系统特别严重,这是在横壁成像场景中获得足够的渗透深度所必需的。因为UWB信号通常具有大的分数带宽,所以反射脉冲沿慢速时间方向位于范围内;这是众所周知的范围散步问题。作为对此问题的有希望的解决方案,本文新介绍了一种基于高斯内核密度估计的超分辨率多普勒速度估计算法的技术,该估计转换了观察范围和X2013;指向多普勒相关的范围。此外,这种方法对具有压缩感测(CS)滤波器的超分辨率范围提取进行了重要贡献,该压缩检测(CS)滤波器与与微多普勒组件相关的人体成像的范围点迁移(RPM)方法组合。包括人体成像场景的2-D或3-D数值模拟表明,所提出的方法允许精确的多普勒速度估计和人体成像,可以在脉冲重复间隔处更新。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号