首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Multiple Instance Choquet Integral Classifier Fusion and Regression for Remote Sensing Applications
【24h】

Multiple Instance Choquet Integral Classifier Fusion and Regression for Remote Sensing Applications

机译:遥感应用的多实例Choquet Integral分类器融合与回归

获取原文
获取原文并翻译 | 示例

摘要

In classifier (or regression) fusion, the aim is to combine the outputs of several algorithms to boost overall performance. Standard supervised fusion algorithms often require accurate and precise training labels. However, accurate labels may be difficult to obtain in many remote sensing applications. This paper proposes novel classification and regression fusion models that can be trained given ambiguously and imprecisely labeled training data in which the training labels are associated with sets of data points (i.e., "bags") instead of individual data points (i.e., "instances") following a multiple-instance learning framework. Experiments were conducted based on the proposed algorithms on both synthetic data and applications such as target detection and crop yield prediction given remote sensing data. The proposed algorithms show effective classification and regression performance.
机译:在分类器(或回归)融合中,目的是将若干算法的输出组合起来促进整体性能。标准监督融合算法通常需要准确且精确的训练标签。然而,在许多遥感应用中可能难以获得准确的标签。本文提出了新颖的分类和回归融合模型,可以削弱地培训和不精确地标记的培训数据,其中训练标签与数据点组(即“袋子”)而不是单独的数据点(即,“实例”)相关联)在多实例的学习框架之后。基于遥感数据的目标检测和作物产量预测等综合数据和应用的所提出的算法进行实验。所提出的算法显示有效的分类和回归性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号