首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Hyperspectral Anomaly Detection via Background and Potential Anomaly Dictionaries Construction
【24h】

Hyperspectral Anomaly Detection via Background and Potential Anomaly Dictionaries Construction

机译:高光谱异常检测通过背景和潜在的异常词典建设

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new anomaly detection method for hyperspectral images based on two well-designed dictionaries: background dictionary and potential anomaly dictionary. In order to effectively detect an anomaly and eliminate the influence of noise, the original image is decomposed into three components: background, anomalies, and noise. In this way, the anomaly detection task is regarded as a problem of matrix decomposition. Considering the homogeneity of background and the sparsity of anomalies, the low-rank and sparse constraints are imposed in our model. Then, the background and potential anomaly dictionaries are constructed using the background and anomaly priors. For the background dictionary, a joint sparse representation (JSR)-based dictionary selection strategy is proposed, assuming that the frequently used atoms in the overcomplete dictionary tend to he the background. In order to make full use of the prior information of anomalies hidden in the scene, the potential anomaly dictionary is constructed. We define a criterion, i.e., the anomalous level of a pixel, by using the residual calculated in the JSR model within its local region. Then, it is combined with a weighted term to alleviate the influence of noise and background. Experiments show that our proposed anomaly detection method based on potential anomaly and background dictionaries construction can achieve superior results compared with other state-of-the-art methods.
机译:在本文中,我们提出了一种基于两个精心设计的词典的高光谱图像的新的异常检测方法:背景词典和潜在的异常字典。为了有效地检测异常并消除噪声的影响,原始图像被分解成三个部件:背景,异常和噪声。以这种方式,异常检测任务被认为是矩阵分解的问题。考虑到背景的均匀性和异常的稀疏性,在我们的模型中施加了低级别和稀疏约束。然后,使用背景和异常前沿构建背景和潜在的异常词典。对于背景词典,提出了基于关节稀疏表示(JSR)的字典选择策略,假设过度普遍词典中的常用原子倾向于背景。为了充分利用隐藏在场景中的异常的先前信息,构建了潜在的异常字典。我们通过使用本地区域内的JSR模型中的残差来定义一个标准,即像素的异常水平。然后,它与加权术语相结合以缓解噪声和背景的影响。实验表明,与潜在的异常和背景词典建设的提出的异常检测方法可以实现优异的结果,与其他最先进的方法相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号