首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Fully Adaptive Radar for Variable Resolution Imaging
【24h】

Fully Adaptive Radar for Variable Resolution Imaging

机译:可变分辨率成像的全自适应雷达

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the first application of the fully adaptive radar (FAR) framework for cognition to the process of radar imaging. A cognitive radar adapts to its surroundings based on its perceptions of the environment, offering improved performance for a multitude of radar applications. We implemented an autoregressive backprojection (ARBP) imaging technique for the circular synthetic aperture radar (SAR) video within the structure of the FAR framework, allowing the system to adapt its down-range and cross-range resolutions to keep the detected targets visually distinct. This simple demonstration paves the way for more advanced adaptive imaging scenarios in the future. Application of the technique to the GOTCHA volumetric SAR data set demonstrated its capability in a realistic scenario in the presence of clutter and limited target persistence. When applied to the GOTCHA data set, the adaptive imaging systems cumulative executive optimization cost (CEOC), which is used to quantify the overall performance, was 41.3 smaller than the constant, fine resolution case. This significant improvement in CEOC comes at the expense of occasionally failing to meet imaging performance goals as the system adjusts to changes in the environment.
机译:本文介绍了用于认知的全自适应雷达(FAR)框架在雷达成像过程中的首次应用。认知雷达会根据对环境的感知来适应周围环境,从而为多种雷达应用提供改进的性能。我们在FAR框架的结构内对圆形合成孔径雷达(SAR)视频实施了自回归反投影(ARBP)成像技术,从而使系统能够调整其近距离和跨距离分辨率,以使检测到的目标在视觉上保持清晰。这个简单的演示为将来更高级的自适应成像方案铺平了道路。该技术在GOTCHA体积SAR数据集上的应用证明了它在杂乱且目标持久性有限的现实情况下的功能。当应用于GOTCHA数据集时,用于量化整体性能的自适应成像系统累积执行优化成本(CEOC)比恒定的高分辨率分辨率小41.3。当系统适应环境变化时,CEOC的这一重大改进是以偶尔无法满足成像性能目标为代价的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号