首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Bayesian Inversion of Logging-While-Drilling Extra-Deep Directional Resistivity Measurements Using Parallel Tempering Markov Chain Monte Carlo Sampling
【24h】

Bayesian Inversion of Logging-While-Drilling Extra-Deep Directional Resistivity Measurements Using Parallel Tempering Markov Chain Monte Carlo Sampling

机译:使用并行回火马尔可夫链蒙特卡洛采样法测井时钻探超深方向电阻率的贝叶斯反演

获取原文
获取原文并翻译 | 示例

摘要

We present a Bayesian inversion scheme to extract multiple bed boundaries from extra-deep directional logging-while-drilling (LWD) resistivity measurements (EDDRM). The inversion uses a dimensionality reduction approach to simplify the three-dimensional inversion problem into a stitch of 1-D ones. The Bayesian framework associated with a parallel tempering (PT) Markov Chain Monte Carlo (MCMC) sampling algorithm is invoked to derive the multiple boundaries from the 1-D inverse model. The kernel of PT algorithm is that multiple chains with different temperatures execute parallelly and the states can be swapped between the chains. Compared with conventional single-chain MCMC, the PT strategy accelerates the convergence and has a better global search capability. In addition, a new 1-D inverse model is proposed. By letting all beds share the same anisotropy coefficient, the new model incorporates fewer parameters of interests. Therefore, the MCMC samples can be reduced significantly. Numerical experiments performed over synthetic examples are presented to verify the feasibility of the new model, to test the inversion performance and to obtain the best practice of the inversion. The uncertainty of inverted results is also assessed from the probability distributions of resistivity profile and histograms of relative dipping and formation anisotropy.
机译:我们提出了一种贝叶斯反演方案,可以从超深定向随钻测井(LWD)电阻率测量值(EDDRM)中提取多个地层边界。反演使用降维方法将三维反演问题简化为一维线迹。调用与并行回火(PT)马尔可夫链蒙特卡洛(MCMC)采样算法相关联的贝叶斯框架,以从一维逆模型中导出多个边界。 PT算法的核心是多个温度不同的链并行执行,并且状态可以在链之间交换。与传统的单链MCMC相比,PT策略加快了收敛速度,并具有更好的全局搜索能力。另外,提出了一种新的一维逆模型。通过让所有床共享相同的各向异性系数,新模型合并了较少的关注参数。因此,可以显着减少MCMC样本。提出了对合成示例进行的数值实验,以验证新模型的可行性,测试反演性能并获得反演的最佳实践。还可以通过电阻率曲线的概率分布以及相对倾角和地层各向异性的直方图来评估反演结果的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号