首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Self-Adaptive Generalized S-Transform and Its Application in Seismic Time–Frequency Analysis
【24h】

Self-Adaptive Generalized S-Transform and Its Application in Seismic Time–Frequency Analysis

机译:自适应广义S变换及其在地震时频分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Achieving a proper time-frequency (TF) resolution is the key to extract information from seismic data using TF algorithms and characterize reservoir properties using decomposed frequency components. The generalized S-transform (GST) is one of the most widely used TF algorithms. However, it is difficult to choose an optimized parameter set for the whole seismic data set. In this paper, we propose to set the parameters of the GST adaptively using the instantaneous frequency (IF) of seismic traces. Our workflow begins with building a relationship between the parameter set of the GST and IF using a synthetic wedge model. We use the IF as an indicator for the time thickness of each trace in the wedge model. We then compute the TF spectrum of each trace using the GST with different parameter sets and compare the similarity between the computed TF spectrum and theory TF spectrum. The parameter set with the largest similarity is regarded as the best parameter set for each trace in the wedge model. In this manner, we build a relationship between the parameter set and IF value. We can finally choose the optimum parameter set for the GST according to the IF values of seismic traces. We name the proposed workflow as the self-adaptive GST (SAGST). To demonstrate the validity and effectiveness of the proposed SAGST, we apply it to synthetic seismic traces and field data. Both synthetic and real data examples illustrate that the SAGST can obtain a TF representation with a high TF resolution.
机译:获得适当的时频(TF)分辨率是使用TF算法从地震数据中提取信息并使用分解的频率分量表征储层特性的关键。广义S变换(GST)是使用最广泛的TF算法之一。但是,很难为整个地震数据集选择一个优化的参数集。在本文中,我们建议使用地震道的瞬时频率(IF)自适应地设置GST的参数。我们的工作流程始于使用合成楔形模型在GST和IF的参数集之间建立关系。我们使用IF作为楔形模型中每条迹线时间厚度的指标。然后,我们使用具有不同参数集的GST计算每条迹线的TF频谱,并比较计算出的TF频谱和理论TF频谱之间的相似性。具有最大相似性的参数集被认为是楔形模型中每个迹线的最佳参数集。通过这种方式,我们在参数集和IF值之间建立了关系。最后,我们可以根据地震道的IF值为GST选择最佳参数集。我们将建议的工作流程命名为自适应GST(SAGST)。为了证明所提出的SAGST的有效性和有效性,我们将其应用于合成地震道和野外数据。综合和实际数据示例均说明,SAGST可以获得具有高TF分辨率的TF表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号