首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Portability Study of an OpenCL Algorithm for Automatic Target Detection in Hyperspectral Images
【24h】

Portability Study of an OpenCL Algorithm for Automatic Target Detection in Hyperspectral Images

机译:OpenCL算法在高光谱图像中自动目标检测的可移植性研究

获取原文
获取原文并翻译 | 示例

摘要

In the last decades, the problem of target detection has received considerable attention in remote sensing applications. When this problem is tackled using hyperspectral images with hundreds of bands, the use of high-performance computing (HPC) is essential. One of the most popular algorithms in the hyperspectral image analysis community for this purpose is the automatic target detection and classification algorithm (ATDCA). Previous research has already investigated the mapping of ATDCA on HPC platforms such as multicore processors, graphics processing units (GPUs), and field-programmable gate arrays (FPGAs), showing impressive speedup factors (after careful fine-tuning) that allow for its exploitation in time-critical scenarios. However, the lack of standardization resulted in most implementations being too specific to a given architecture, eliminating (or at least making extremely difficult) code reusability across different platforms. In order to address this issue, we present a portability study of an implementation of ATDCA developed using the open computing language (OpenCL). We focus on cross-platform parameters such as performance, energy consumption, and code design complexity, as compared to previously developed (hand-tuned) implementations. Our portability study analyzes different strategies to expose data parallelism as well as enable the efficient exploitation of complex memory hierarchies in heterogeneous devices. We also conduct an assessment of energy consumption and discuss metrics to analyze the quality of our code. The conducted experimentsusing synthetic and real hyperspectral data sets collected by the Hyperspectral Digital Imagery Collection Experiment (HYDICE) and NASAs Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS)demonstrate, for the first time in the literature, that portability across different HPC platforms can be achieved for real-time target detection in hyperspectral missions.
机译:在过去的几十年中,目标检测问题在遥感应用中受到了相当大的关注。当使用具有数百个波段的高光谱图像解决此问题时,必须使用高性能计算(HPC)。为此目的,高光谱图像分析社区中最受欢迎的算法之一是自动目标检测和分类算法(ATDCA)。先前的研究已经研究了ATCCA在HPC平台(例如多核处理器,图形处理单元(GPU)和现场可编程门阵列(FPGA))上的映射,显示出令人印象深刻的加速因素(经过仔细的微调)使其可以被利用。在时间紧迫的情况下。但是,由于缺乏标准化,导致大多数实现都过于特定于给定的体系结构,从而消除了(或至少使其极为困难)跨不同平台的代码可重用性。为了解决此问题,我们提出了使用开放计算语言(OpenCL)开发的ATDCA实现的可移植性研究。与以前开发(手动调整)的实现相比,我们专注于跨平台参数,例如性能,能耗和代码设计复杂性。我们的可移植性研究分析了暴露数据并行性的不同策略,并能够有效利用异构设备中的复杂内存层次结构。我们还将进行能耗评估,并讨论指标以分析代码质量。使用由高光谱数字影像收集实验(HYDICE)和NASA机载可见红外成像光谱仪(AVIRIS)收集的合成和真实高光谱数据集进行的实验首次证明了跨不同HPC平台的可移植性实现了高光谱任务中的实时目标检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号