首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Can We Track Targets From Space? A Hybrid Kernel Correlation Filter Tracker for Satellite Video
【24h】

Can We Track Targets From Space? A Hybrid Kernel Correlation Filter Tracker for Satellite Video

机译:我们可以从太空追踪目标吗?

获取原文
获取原文并翻译 | 示例

摘要

Despite the great success of correlation filter-based trackers in visual tracking, it is questionable whether they can still perform on the satellite video data, acquired by a satellite or space station very high above the earth. The difficulty lies in that the targets usually occupy only a few pixels compared with the image size of over one million pixels and almost melt into the similar background. Since correlation filter models strongly depend on the quality of features and the spatial layout of the tracked object, they would probably fail on satellite video tracking tasks. In this paper, we propose a hybrid kernel correlation filter (HKCF) tracker employing two complementary features adaptively in a ridge regression framework. One feature is the optical flow that can detect variation pixels of the target. The other one is the histogram of oriented gradient that can capture the contour and texture information in the target, and an adaptive fusion strategy is proposed to employ the strengths of both features in different satellite videos. Quantitative evaluations are performed on six real satellite video data sets. The results show that our approach outperforms state-of-the-art tracking methods while running at more than 100 frames/s.
机译:尽管基于相关滤波器的跟踪器在视觉跟踪中取得了巨大的成功,但它们是否仍然可以对由高于地球的卫星或空间站获取的卫星视频数据执行操作,仍存在疑问。困难在于,与超过一百万像素的图像大小相比,目标通常仅占据几个像素,几乎融化为相似的背景。由于相关性过滤器模型很大程度上取决于特征的质量和被跟踪对象的空间布局,因此它们可能会在卫星视频跟踪任务中失败。在本文中,我们提出了在岭回归框架中自适应地采用两个互补特征的混合核相关滤波器(HKCF)跟踪器。一种特征是可以检测目标的变化像素的光流。另一个是定向梯度直方图,可以捕获目标中的轮廓和纹理信息,并提出了一种自适应融合策略,以利用不同卫星视频中这两个特征的优势。对六个真实的卫星视频数据集进行定量评估。结果表明,当以超过100帧/秒的速度运行时,我们的方法优于最新的跟踪方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号