首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image Classification
【24h】

Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image Classification

机译:高光谱遥感图像分类的多尺度密集网络

获取原文
获取原文并翻译 | 示例

摘要

For hyperspectral remote sensing image (HSI) classification, the learning process of deep neural networks has been progressively advanced in depth, but the fine features are often largely lost or even disappear in the process of depth transfer. With the increase in feature aggregation and connectivity, the complexity of the network and the training parameters increases greatly, requiring more training time. This paper proposed a multi-scale dense network (MSDN) for HSI classification that made full use of different scale information in the network structure and combined scale information throughout the network. It implemented feature extraction of HSIs in two dimensions, including the features at fine and coarse levels. In the horizontal direction, it considered the deep extraction of HSI features, and the 3-D dense connection structure was used for aggregating features at different levels. In the vertical direction, scale information was considered, and three-scale feature maps at low, middle, and high levels were generated based on the first layer of the network. The MSDN used stride convolution for downsampling and combined feature information at different scale levels. The MSDN extracted features along the diagonal line. The network implemented the reconstruction of deep feature extraction and multi-scale fusion for HSI classification. The MSDN model performed well on representative HSI datasets, namely, the Indian Pines, Pavia University, Salinas, Botswana, and Kennedy Space Center datasets. It improved the training speed and accuracy for HSI classification and especially improved the convergence speed, which effectively saved computing resources and had high stability.
机译:对于高光谱遥感影像(HSI)分类,深度神经网络的学习过程在深度上已逐步发展,但在深度传递过程中,精细特征通常会大量丢失甚至消失。随着特征聚合和连接性的增加,网络的复杂性和训练参数大大增加,需要更多的训练时间。本文提出了一种用于HSI分类的多尺度密集网络(MSDN),它充分利用了网络结构中的不同尺度信息,并在整个网络中组合了尺度信息。它在二维上执行了HSI的特征提取,包括精细和粗糙级别的特征。在水平方向上,它考虑了对HSI特征的深度提取,并且使用3-D密集连接结构在不同级别上聚合特征。在垂直方向上,考虑了比例信息,并根据网络的第一层生成了低,中和高级别的三比例特征图。 MSDN使用跨度卷积进行下采样,并在不同比例级别上组合了特征信息。 MSDN沿对角线提取了要素。该网络实现了用于HSI分类的深度特征提取和多尺度融合的重建。 MSDN模型在代表性的HSI数据集上表现良好,即印度松树,帕维亚大学,萨利纳斯,博茨瓦纳和肯尼迪航天中心数据集。它提高了HSI分类的训练速度和准确性,特别是提高了收敛速度,有效节省了计算资源,具有较高的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号