首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Edge-Enhanced GAN for Remote Sensing Image Superresolution
【24h】

Edge-Enhanced GAN for Remote Sensing Image Superresolution

机译:边缘增强型GAN,可实现遥感图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

The current superresolution (SR) methods based on deep learning have shown remarkable comparative advantages but remain unsatisfactory in recovering the high-frequency edge details of the images in noise-contaminated imaging conditions, e. g., remote sensing satellite imaging. In this paper, we propose a generative adversarial network (GAN)-based edge-enhancement network (EEGAN) for robust satellite image SR reconstruction along with the adversarial learning strategy that is insensitive to noise. In particular, EEGAN consists of two main subnetworks: an ultradense subnetwork (UDSN) and an edge-enhancement subnetwork (EESN). In UDSN, a group of 2-D dense blocks is assembled for feature extraction and to obtain an intermediate high-resolution result that looks sharp but is eroded with artifacts and noises as previous GAN-based methods do. Then, EESN is constructed to extract and enhance the image contours by purifying the noise-contaminated components with mask processing. The recovered intermediate image and enhanced edges can be combined to generate the result that enjoys high credibility and clear contents. Extensive experiments on Kaggle Open Source Data set, Jilin-1 video satellite images, and Digitalglobe show superior reconstruction performance compared to the state-of-the- art SR approaches.
机译:当前基于深度学习的超分辨率(SR)方法已显示出显着的比较优势,但在受噪声污染的成像条件下,例如在恢复图像的高频边缘细节方面仍然不能令人满意。例如,遥感卫星成像。在本文中,我们提出了一种基于生成对抗网络(GAN)的边缘增强网络(EEGAN),用于鲁棒卫星图像SR重建以及对噪声不敏感的对抗学习策略。尤其是,EEGAN由两个主要子网组成:超密集子网(UDSN)和边缘增强子网(EESN)。在UDSN中,组装了一组2-D密集块以进行特征提取,并获得了中间的高分辨率结果,该结果看起来很清晰,但是像以前基于GAN的方法一样,被伪影和噪声侵蚀了。然后,构造EESN以通过使用掩膜处理纯化受噪声污染的组件来提取和增强图像轮廓。可以将恢复的中间图像和增强的边缘进行组合,以生成具有高可信度和清晰内容的结果。与最先进的SR方法相比,在Kaggle开源数据集,吉林1视频卫星图像和Digitalglobe上进行的大量实验显示出卓越的重建性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号