首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Intrinsic Image Recovery From Remote Sensing Hyperspectral Images
【24h】

Intrinsic Image Recovery From Remote Sensing Hyperspectral Images

机译:遥感高光谱图像的本征图像恢复

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel reflectance model is proposed to recover intrinsic images from remote sensing hyperspectral images (HSIs). Intrinsic image recovery is a well-known challenging and underconstrained problem in computer vision, and it becomes even more severely illposed for HSIs. To reduce the uncertainties and improve the recovery accuracy, two kinds of priors are introduced: 1) shading prior which describes the geometric relation between illuminate and object surface and 2) reflectance prior based on L1-graph coding, which describes the relation between pigment density with reflectance. These priors can effectively eliminate the reflectance inhomogeneity caused by surface normal changes or pigment density variations other than material changes. Then, a noniterative optimization method is proposed to combine the shading prior and reflectance prior, with which closed-form solutions can be derived and thus avoided falling into local optimums. The experimental results demonstrate that the proposed method can efficiently improve the spectral reflectance homogeneity within a class while preserving the image boundaries; it also produces a competitive performance with the state of the art when utilizing the extracted intrinsic hyperspectral reflectance feature in the task of HSI classification.
机译:本文提出了一种新颖的反射模型,可以从遥感高光谱图像(HSI)中恢复固有图像。固有图像恢复是计算机视觉中一个众所周知的具有挑战性和约束不足的问题,它对HSI的危害甚至更大。为了减少不确定性并提高恢复精度,引入了两种先验先验:1)阴影先验描述了照明与物体表面之间的几何关系; 2)基于L1图编码的反射先验,描述了颜料密度之间的关系。具有反射率。这些先验可以有效地消除由表面法向变化或除材料变化以外的颜料密度变化引起的反射率不均匀性。然后,提出了一种非迭代优化方法,将先验阴影和先验反射相结合,可以得出封闭形式的解,从而避免陷入局部最优。实验结果表明,该方法在保持图像边界的同时,可以有效地提高一类光谱反射率的均匀性。当在HSI分类任务中利用提取的固有高光谱反射特征时,它还具有与现有技术相竞争的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号