首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Spectral-Spatial Feature Extraction and Classification by ANN Supervised With Center Loss in Hyperspectral Imagery
【24h】

Spectral-Spatial Feature Extraction and Classification by ANN Supervised With Center Loss in Hyperspectral Imagery

机译:在高光谱影像中心损失的监督下的人工神经网络光谱空间特征提取与分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a spectral-spatial feature extraction and classification framework based on an artificial neuron network in the context of hyperspectral imagery. With limited labeled samples, only spectral information is exploited for training and spatial context is integrated posteriorly at the testing stage. Taking advantage of recent advances in face recognition, a joint supervision symbol that combines softmax loss and center loss is adopted to train the proposed network, by which intraclass features are gathered while interclass variations are enlarged. Based on the learned architecture, the extracted spectrum-based features are classified by a center classifier. Moreover, to fuse the spectral and spatial information, an adaptive spectral-spatial center classifier is developed, where multiscale neighborhoods are considered simultaneously, and the final label is determined using an adaptive voting strategy. Finally, experimental results on three well-known data sets validate the effectiveness of the proposed methods compared with the state-of-the-art approaches.
机译:在本文中,我们提出了一种在高光谱图像环境下基于人工神经元网络的光谱空间特征提取和分类框架。对于有限的标记样本,仅频谱信息可用于训练,并且在测试阶段后向整合空间上下文。利用人脸识别的最新进展,采用结合了softmax损失和中心损失的联合监管符号来训练拟议的网络,通过该联合网络收集类内特征,同时扩大类间差异。基于学习的架构,由中心分类器对提取的基于频谱的特征进行分类。此外,为了融合频谱和空间信息,开发了一种自适应频谱空间中心分类器,其中同时考虑了多尺度邻域,并使用自适应投票策略确定了最终标签。最后,在三个众所周知的数据集上的实验结果证明了所提出方法与最新技术方法相比的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号