首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Novel Sharpening Approach for Superresolving Multiresolution Optical Images
【24h】

A Novel Sharpening Approach for Superresolving Multiresolution Optical Images

机译:一种超分辨多分辨率光学图像的锐化方法

获取原文
获取原文并翻译 | 示例

摘要

This paper aims to provide a compact superresolution formulation specific for multispectral (MS) multiresolution optical data, i.e., images characterized by different scales across different spectral bands. The proposed method, named multiresolution sharpening approach (MuSA), relies on the solution of an optimization problem tailored to the properties of those images. The superresolution problem is formulated as the minimization of an objective function containing a data-fitting term that models the blurs and downsamplings of the different bands and a patch-based regularizer that promotes image self-similarity guided by the geometric details provided by the high-resolution bands. By exploiting the approximately low-rank property of the MS data, the ill-posedness of the inverse problem in hand is strongly reduced, thus sharply improving its conditioning. The state-of-the-art color block-matching and 3D filtering (C-BM3D) image denoiser is used as a patch-based regularizer by leveraging the "plug-and-play" framework: the denoiser is plugged into the iterations of the alternating direction method of multipliers. The main novelties of the proposed method are: 1) the introduction of an observation model tailored to the specific properties of (MS) multiresolution images and 2) the exploitation of the high-spatial-resolution bands to guide the grouping step in the color block-matching and 3D filtering (C-BM3D) denoiser, which constitutes a form of regularization learned from the high-resolution channels. The results obtained on the real and synthetic Sentinel 2 data sets give an evidence of the effectiveness of the proposed approach.
机译:本文旨在提供一种紧凑的超分辨率公式,专门针对多光谱(MS)多分辨率光学数据,即以跨不同光谱带的不同比例为特征的图像。所提出的方法称为多分辨率锐化方法(MuSA),它依赖于针对这些图像的属性量身定制的优化问题的解决方案。将超分辨率问题描述为目标函数的最小化,其中包含一个数据拟合项,该数据拟合项对不同波段的模糊和下采样进行建模,而基于补丁的正则化器则可以提高图像的自相似性,而高相似度所提供的几何细节则可以指导这种相似性分辨率带。通过利用MS数据的近似低秩性质,可以大大减少手头逆问题的不适性,从而显着改善其条件。最新的色彩块匹配和3D滤波(C-BM3D)图像降噪器通过利用“即插即用”框架用作基于补丁的正则化器:将降噪器插入到乘法器交替方向方法的迭代。所提出方法的主要新颖之处在于:1)引入了针对(MS)多分辨率图像的特定属性的观测模型,以及2)利用高空间分辨率波段来指导色块中的分组步骤-匹配和3D滤波(C-BM3D)降噪器,构成从高分辨率通道学习到的一种正则化形式。在真实和综合的Sentinel 2数据集上获得的结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号