首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Realistic FDTD GPR Antenna Models Optimized Using a Novel Linear/Nonlinear Full-Waveform Inversion
【24h】

Realistic FDTD GPR Antenna Models Optimized Using a Novel Linear/Nonlinear Full-Waveform Inversion

机译:使用新型线性/非线性全波形反演优化的逼真的FDTD GPR天线模型

获取原文
获取原文并翻译 | 示例

摘要

Finite-difference time-domain forward modeling of ground-penetrating radar (GPR) is becoming regularly used in model-based interpretation methods, such as full-waveform inversion (FWI) and machine learning schemes. Oversimplifications in such forward models can compromise the accuracy and realism with which real GPR responses can be simulated, which degrades the overall performance of interpretation techniques. A forward model must be able to accurately simulate every part of the GPR problem that affects the resulting scattered field. A key element, especially for near-field applications, is the antenna system. Therefore, the model must contain a complete description of the antenna, including the excitation source and waveform, the geometry, and the dielectric properties of any materials in the antenna. The challenge is that some of these parameters are not known or cannot be easily measured, especially for commercial GPR antennas that are used in practice. We present a novel hybrid linearonlinear FWI approach that can be used, with only knowledge of the basic antenna geometry, to simultaneously optimize the dielectric properties and excitation waveform of the antenna and minimize the error between real and synthetic data. The accuracy and stability of our proposed methodology are demonstrated by successfully modeling a 1.5-GHz commercial antenna from Geophysical Survey Systems, Inc. Our framework allows accurate models of GPR antennas to be developed without requiring detailed knowledge of every component of the antenna. This is significant because it allows commercial GPR antennas, regularly used in GPR surveys, to be more readily simulated.
机译:探地雷达的有限差分时域正演模型正逐渐用于基于模型的解释方法中,例如全波形反演(FWI)和机器学习方案。在这样的正向模型中过分简化会损害准确性和真实性,从而无法模拟真实的GPR响应,从而降低解释技术的整体性能。前向模型必须能够准确模拟会影响所得散射场的GPR问题的每个部分。天线系统是一个关键要素,特别是对于近场应用而言。因此,模型必须包含天线的完整描述,包括天线的激励源和波形,几何形状以及任何材料的介电特性。挑战在于这些参数中的某些未知或难以测量,尤其是对于实际使用的商用GPR天线。我们提出了一种新颖的线性/非线性FWI混合方法,仅需了解基本的天线几何形状,即可同时优化天线的介电特性和激励波形,并最小化真实数据与合成数据之间的误差。我们成功地对来自Geophysical Survey Systems,Inc.的1.5 GHz商业天线进行建模,证明了我们提出的方法的准确性和稳定性。我们的框架允许开发GPR天线的精确模型,而无需详细了解天线的每个组件。这很重要,因为它可以更容易地模拟GPR调查中经常使用的商用GPR天线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号