首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Sea-Surface Floating Small Target Detection by One-Class Classifier in Time-Frequency Feature Space
【24h】

Sea-Surface Floating Small Target Detection by One-Class Classifier in Time-Frequency Feature Space

机译:时频特征空间中一类分类器的海面漂浮小目标检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents one feature-based detector to find sea-surface floating small targets. In integration time of the order of seconds, target returns exhibit time-frequency (TF) characteristics different from sea clutter. The normalized smoothed pseudo-Wigner-Ville distribution (SPWVD) is proposed to enhance TF characteristics of target returns, which is computed from the SPWVDs of time series at the cell under test (CUT) and reference cells around the CUT. The differences between target returns and the TF pattern of sea clutter are congregated on the normalized SPWVD. From that the ridge integration (RI) is computed and significant TF points from each time slice form a binary image. The number of connected regions and the maximum size of connected regions in the binary image are extracted and are combined with the RI into a 3-D feature vector. Due to the unavailability of the feature vector samples of radar returns with target, a one-class classifier with a controllable false alarm rate is constructed from the feature vector samples of sea clutter by the fast convex hull learning algorithm. As a result, a new feature-based detector is designed. It is compared with the tri-feature-based detector using amplitude and Doppler features and the fractal-based detector using the Hurst exponent of amplitude time series on the recognized IPIX radar database for floating small target detection. The results show that a significant improvement in detection performance is attained.
机译:本文提出了一种基于特征的探测器,用于发现海面漂浮的小目标。在几秒钟的积分时间内,目标返回的时间-频率(TF)特性与海杂波不同。提出归一化的平滑伪维格纳威勒分布(SPWVD)以增强目标收益的TF特性,这是根据被测单元(CUT)和CUT周围的参考单元的时间序列的SPWVD计算得出的。目标收益和海杂波的TF模式之间的差异集中在归一化SPWVD上。由此计算出岭积分(RI),每个时间片的有效TF点形成一个二进制图像。提取二值图像中的连接区域的数量和连接区域的最大大小,并将其与RI组合成3-D特征向量。由于不具备目标雷达回波的特征向量样本,通过快速凸包学习算法,从海杂波的特征向量样本中构建了具有可控误报率的一类分类器。结果,设计了一种新的基于特征的检测器。在识别的IPIX雷达数据库上,将其与使用幅度和多普勒特征的基于三特征的检测器以及使用幅度时间序列的赫斯特指数的基于分形的检测器进行比较,以进行浮动小目标检测。结果表明检测性能得到了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号