首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in Optical Remote Sensing Imagery
【24h】

HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in Optical Remote Sensing Imagery

机译:HSF-Net:用于光学遥感影像中船舶检测的多尺度深度特征嵌入

获取原文
获取原文并翻译 | 示例

摘要

Ship detection is an important and challenging task in remote sensing applications. Most methods utilize specially designed hand-crafted features to detect ships, and they usually work well only on one scale, which lack generalization and impractical to identify ships with various scales from multiresolution images. In this paper, we propose a novel deep feature-based method to detect ships in very high-resolution optical remote sensing images. In our method, a regional proposal network is used to generate ship candidates from feature maps produced by a deep convolutional neural network. To efficiently detect ships with various scales, a hierarchical selective filtering layer is proposed to map features in different scales to the same scale space. The proposed method is an end-to-end network that can detect both inshore and offshore ships ranging from dozens of pixels to thousands. We test our network on a large ship data set which will be released in the future, consisting of Google Earth images, GaoFen-2 images, and unmanned aerial vehicle data. Experiments demonstrate high precision and robustness of our method. Further experiments on aerial images show its good generalization to unseen scenes.
机译:在遥感应用中,船舶检测是一项重要且具有挑战性的任务。大多数方法利用专门设计的手工特征来检测船只,并且它们通常只能在一个尺度上很好地工作,这缺乏概括性,并且无法从多分辨率图像中识别具有不同尺度的船只。在本文中,我们提出了一种基于深度特征的新颖方法来检测超高分辨率光学遥感图像中的船只。在我们的方法中,使用区域提案网络从深度卷积神经网络生成的特征图生成候选船。为了有效地检测具有不同比例尺的船舶,提出了一种分层选择性过滤层,以将不同比例尺的特征映射到相同比例尺空间。所提出的方法是一种端到端网络,可以检测从几十个像素到数千个像素的近海和近海船舶。我们在大型船舶数据集上测试我们的网络,该数据集将在未来发布,其中包括Google Earth图像,GaoFen-2图像和无人飞行器数据。实验证明了我们方法的高精度和鲁棒性。航空影像的进一步实验表明,它可以很好地推广到看不见的场景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号