首页> 外文期刊>IEEE Transactions on Fuzzy Systems >A Complexity Guided Algorithm for Association Rule Extraction on Fuzzy DataCubes
【24h】

A Complexity Guided Algorithm for Association Rule Extraction on Fuzzy DataCubes

机译:基于复杂性的模糊数据立方体关联规则提取算法

获取原文
获取原文并翻译 | 示例

摘要

The use of online analytical processing (OLAP) systems as data sources for data mining techniques has been widely studied and has resulted in what is known as online analytical mining (OLAM). As a result of both the use of OLAP technology in new fields of knowledge and the merging of data from different sources, it has become necessary for models to support imprecision. We, therefore, need OLAM methods which are able to deal with this imprecision. Association rules are one of the most used data mining techniques. There are several proposals that enable the extraction of association rules on DataCubes but few of these deal with imprecision in the process. The main problem observed in these proposals is the complexity of the rule set obtained. In this paper, we present a novel association rule extraction method that works over a fuzzy multidimensional model which is capable of representing and managing imprecise data. Our method deals with the problem of reducing the complexity of the result obtained by using fuzzy concepts and a hierarchical relation between them.
机译:使用联机分析处理(OLAP)系统作为数据挖掘技术的数据源已得到广泛研究,并导致了所谓的联机分析挖掘(OLAM)。由于在新的知识领域中使用了OLAP技术,并且合并了来自不同来源的数据,因此模型必须支持不精确性。因此,我们需要能够处理这种不精确性的OLAM方法。关联规则是最常用的数据挖掘技术之一。有几种建议可以提取DataCube上的关联规则,但其中很少涉及处理过程中的不精确性。这些建议中观察到的主要问题是所获得规则集的复杂性。在本文中,我们提出了一种新颖的关联规则提取方法,该方法适用于能够表示和管理不精确数据的模糊多维模型。我们的方法解决了使用模糊概念及其之间的层次关系来降低结果复杂度的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号