首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy Interpolation and Extrapolation: A Practical Approach
【24h】

Fuzzy Interpolation and Extrapolation: A Practical Approach

机译:模糊内插和外推:一种实用的方法

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy interpolation does not only help to reduce the complexity of fuzzy models, but also makes inference in sparse rule-based systems possible. It has been successfully applied to systems control, but limited work exists for its applications to tasks like prediction and classification. Almost all fuzzy interpolation techniques in the literature make strong assumptions that there are two closest adjacent rules available to the observation, and that such rules must flank the observation for each attribute. Also, some interpolation approaches cannot handle fuzzy sets whose membership functions involve vertical slopes. To avoid such limitations and develop a more practical approach, this paper extends the work of Huang and Shen. The result enables both interpolation and extrapolation which involve multiple fuzzy rules, with each rule consisting of multiple antecedents. Two realistic applications, namely truck backer-upper control and computer activity prediction, are provided in this paper to demonstrate the utility of the extended approach. Experiment-based comparisons to the most commonly used Mamdani fuzzy reasoning mechanism, and to other existing fuzzy interpolation techniques are given to show the significance and potential of this research.
机译:模糊插值不仅有助于降低模糊模型的复杂性,而且使得在稀疏基于规则的系统中进行推理成为可能。它已经成功地应用于系统控制,但是其在诸如预测和分类之类的任务上的应用工作还很有限。文献中几乎所有的模糊插值技术都强烈假设有两个最邻近的规则可用于观测,并且这些规则必须在每个属性的观测侧翼。此外,某些插值方法无法处理隶属函数涉及垂直斜率的模糊集。为了避免这种局限性并开发一种更实用的方法,本文扩展了黄和沉的工作。结果可以进行涉及多个模糊规则的内插和外推,每个规则都由多个前因组成。本文提供了两个现实的应用程序,即卡车后备控制系统和计算机活动预测,以演示扩展方法的实用性。与最常用的Mamdani模糊推理机制以及其他现有的模糊插值技术进行了基于实验的比较,以显示本研究的意义和潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号