首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >A Fast and Scalable Multiobjective Genetic Fuzzy System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems
【24h】

A Fast and Scalable Multiobjective Genetic Fuzzy System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems

机译:高维回归问题的语言模型快速可扩展多目标遗传模糊系统

获取原文
获取原文并翻译 | 示例

摘要

Linguistic fuzzy modeling in high-dimensional regression problems poses the challenge of exponential-rule explosion when the number of variables and/or instances becomes high. One way to address this problem is by determining the used variables, the linguistic partitioning and the rule set together, in order to only evolve very simple, but still accurate models. However, evolving these components together is a difficult task, which involves a complex search space. In this study, we propose an effective multiobjective evolutionary algorithm that, based on embedded genetic database (DB) learning (involved variables, granularities, and slight fuzzy-partition displacements), allows the fast learning of simple and quite-accurate linguistic models. Some efficient mechanisms have been designed to ensure a very fast, but not premature, convergence in problems with a high number of variables. Further, since additional problems could arise for datasets with a large number of instances, we also propose a general mechanism for the estimation of the model error when using evolutionary algorithms, by only considering a reduced subset of the examples. By doing so, we can also apply a fast postprocessing stage for further refining the learned solutions. We tested our approach on 17 real-world datasets with different numbers of variables and instances. Three well-known methods based on embedded genetic DB learning have been executed as references. We compared the different approaches by applying nonparametric statistical tests for multiple comparisons. The results confirm the effectiveness of the proposed method not only in terms of scalability but in terms of the simplicity and generalizability of the obtained models as well.
机译:当变量和/或实例的数量变多时,高维回归问题中的语言模糊建模带来了指数规则爆炸的挑战。解决此问题的一种方法是通过一起确定使用的变量,语言分区和规则集,以便仅演化非常简单但仍准确的模型。但是,将这些组件一起发展是一项艰巨的任务,涉及复杂的搜索空间。在这项研究中,我们提出了一种有效的多目标进化算法,该算法基于嵌入式遗传数据库(DB)学习(涉及的变量,粒度和轻微的模糊分区位移),可以快速学习简单而准确的语言模型。已经设计了一些有效的机制来确保非常快速但不是过早收敛的问题,其中包含大量变量。此外,由于具有大量实例的数据集可能会出现其他问题,因此,我们还提出了一种仅使用示例的简化子集的通用机制来估计使用演化算法时的模型误差。这样,我们还可以应用一个快速的后处理阶段来进一步完善所学的解决方案。我们在17个具有不同数量的变量和实例的真实数据集上测试了我们的方法。已执行了三种基于嵌入式遗传数据库学习的著名方法作为参考。我们通过对多个比较应用非参数统计检验来比较不同的方法。结果不仅在可伸缩性方面,而且在获得的模型的简单性和可概括性方面,都证实了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号