首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >LDA-Based Clustering Algorithm and Its Application to an Unsupervised Feature Extraction
【24h】

LDA-Based Clustering Algorithm and Its Application to an Unsupervised Feature Extraction

机译:基于LDA的聚类算法及其在无监督特征提取中的应用

获取原文
获取原文并翻译 | 示例

摘要

Research has shown fuzzy c-means (FCM) clustering to be a powerful tool to partition samples into different categories. However, the objective function of FCM is based only on the sum of distances of samples to their cluster centers, which is equal to the trace of the within-cluster scatter matrix. In this study, we propose a clustering algorithm based on both within- and between-cluster scatter matrices, extended from linear discriminant analysis (LDA), and its application to an unsupervised feature extraction (FE). Our proposed methods comprise between- and within-cluster scatter matrices modified from the between- and within-class scatter matrices of LDA. The scatter matrices of LDA are special cases of our proposed unsupervised scatter matrices. The results of experiments on both synthetic and real data show that the proposed clustering algorithm can generate similar or better clustering results than 11 popular clustering algorithms: K-means, K-medoid, FCM, the Gustafson–Kessel, Gath–Geva, possibilistic c-means (PCM), fuzzy PCM, possibilistic FCM, fuzzy compactness and separation, a fuzzy clustering algorithm based on a fuzzy treatment of finite mixtures of multivariate Student''s t distributions algorithms, and a fuzzy mixture of the Student''s t factor analyzers model. The results also show that the proposed FE outperforms principal component analysis and independent component analysis.
机译:研究表明,模糊c均值(FCM)聚类是将样本划分为不同类别的强大工具。但是,FCM的目标函数仅基于样本到其聚类中心的距离之和,它等于集群内散射矩阵的迹线。在这项研究中,我们提出了一种基于簇内和簇间散布矩阵的聚类算法,该算法从线性判别分析(LDA)扩展到了其在无监督特征提取(FE)中的应用。我们提出的方法包括根据LDA的类间和类内部散布矩阵修改的类间和类内散布矩阵。 LDA的散射矩阵是我们提出的无监督散射矩阵的特例。综合和真实数据的实验结果表明,与11种流行的聚类算法(K-means,K-medoid,FCM,Gustafson-Kessel,Gath-Geva,可能的c)相比,所提出的聚类算法可产生相似或更好的聚类结果。 -均值(PCM),模糊PCM,可能的FCM,模糊紧实度和分离度,基于对多元Student'st分布算法的有限混合进行模糊处理的模糊聚类算法以及Student'st因子分析器的模糊混合模型。结果还表明,所提出的有限元分析优于主成分分析和独立成分分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号